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Motivation

Suppose we run an experiment in Atlanta to test the effect of a new algorithm,

e.g., pricing or matching, on a ride-sharing platform

By the end of the experiment, estimate global average treatment effect (GATE)

• Difference in outcomes between when the treatment is employed

indefinitely versus when it is absent

• Primary outcome of interest: average conversion rate (fraction of riders

requesting ride after checking price)

Question: How to run this experiment?

• Maybe conventional A/B testing, 50% users in old algorithm and 50% in

new algorithm?

• Any issue?
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e.g., pricing or matching, on a ride-sharing platform

By the end of the experiment, estimate global average treatment effect (GATE)

• Difference in outcomes between when the treatment is employed

indefinitely versus when it is absent

• Primary outcome of interest: average conversion rate (fraction of riders

requesting ride after checking price)

Question: How to run this experiment?

• Maybe conventional A/B testing, 50% users in old algorithm and 50% in

new algorithm?

• Any issue?

⇒ Interference between treated and control users!
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Solution: Switchback experiment

Use the switchback design to control spillovers from treated to control users

• Randomize at the city level (all users either in treated or control state)

• Experiment lasts for, e.g., two weeks

• Flip a coin, e.g., every 56 minutes, to determine whether the next 56

minutes are treated

switchback design

dash lines are switching points, and treated intervals are shaded

This paper studies the design of switchback experiments, with the objective of

more precisely estimating GATE

• Flip a coin every 56 minutes, or longer or shorter?

• Randomize coin flipping frequency (interval length)?

• Other considerations?

Question: What factor may affect the design?
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A prominent factor: Carryover effect

Carryover effect: Treatment Ws at earlier times may affect outcomes Yt at

later times t ≥ s

W1 W2 W3

Y1 Y2 Y3

time

Cumulative effect: The total effect of current and prior treatments on current

outcome. Converge to GATE as the treatment duration increases

If the carryover effect is more persistent, switch less frequently (Bojinov,

Simchi-Levi, and Zhao 2023; Hu and Wager 2022)
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This paper: Estimate the distribution of carryover effects

Assumptions on carryover effect (e.g., hypothesized maximum duration) are

often made when designing switchback experiment

An issue: Carryover effect is unknown ex-ante

Solution: Prior experiments are commonly available and contain information

about carryover effects

This paper proposes to

• Estimate cumulative effects from historical experiments

• Obtain empirical distribution as prior distribution of cumulative effects

• Design experiments assuming cumulative effects are drawn from this prior

5



Illustration of empirical distribution of cumulative effects

Historical experimental data: Data of 149 experiments run across 114 markets

with 890 distinct experiment-market pairs between June 2021 and March 2023

on a ride-sharing platform

• These switchback experiments are run for two weeks with a fixed interval

length of 56 minutes

For each experiment-market pair, estimate a cumulative effect curve (CEC)

• The cumulative effect of treating one, two, three, ... minutes
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Empirical distribution of CECs from prior experiments

12 representative estimated CECs for the treatment duration of {1, · · · , 56}
minutes (in black dots) and their smooth curves by natural cubic splines (in

red)

⇒ Most CECs are non-monotonic and change signs as treatment duration

varies
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Other realistic factors affecting the design

In addition to carryover effects, this paper considers three other realistic

factors that affect the estimation error of GATE and the design, but not

considered in the literature

Factor 1: Periodicity in event density and outcome

• An event can be rider checking price

• The outcome can be whether the rider requests the ride
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Periodicity in event density and outcome

Event density, mean control outcome, and variance of measurement errors all

have a periodic pattern

Event density is higher during peak hours on weekends than during peak hours

on weekdays
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Other realistic factors affecting the design

In addition to carryover effects, this paper considers three other realistic
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Other realistic factors affecting the design

In addition to carryover effects, this paper considers three other realistic

factors that affect the estimation error of GATE and the design, but have not

been considered in the literature

Factor 1: Periodicity in event density and outcome

• An event can be rider checking price

• The outcome can whether the rider requests the ride

Factor 2: Heteroskedastic and correlated measurement errors in event outcomes

Factor 3: Impacts from simultaneous experiments

Design of experiment #1

Design of experiment #2

Simultaneous experiments

Question: How to design a switchback experiment accounting for all factors?
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Empirical Bayes design approach to account for all factors

•Phase 1: Analyze historical data andmodel data generating process

•Phase 2: Estimate the empirical distribution of CECs from prior experiments

•Phase 3: Run synthetic experiments on historical data to compare candidate designs

•Phase 4: Choose the best-performed design in synthetic experiments

• In phase one, event density and periodic pattern are estimated from

historical data and used as the input for the design
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Various heuristic switchback designs

• Fixed duration design: Fixed interval lengths (status quo design)

• Poisson design: Interval lengths drawn from Poisson distribution

• Change-of-measure design: Fixed event occurrence probabilities
Illustration of various designs

Monday of week 1

Monday of week 2

fixed duration design
Monday of week 1

Monday of week 2

Poisson design

daily periodic event density

Monday of week 1

Monday of week 2

change-of-measure design

Illustration of various designs and daily periodic event density (dash lines are switching

points, and treated intervals are shaded) on Mondays in a two-week experiment
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Various heuristic switchback designs (cont.)

• Balanced designs: The treatment assignments in the second week mirror

those in the first week, i.e., balance periodicity
Illustration of various designs

Monday of week 1

Monday of week 2

fixed duration design

Monday of week 1

Monday of week 2

balanced fixed duration design

Monday of week 1

Monday of week 2

Poisson design

Monday of week 1

Monday of week 2

balanced Poisson design

daily periodic event density

Monday of week 1

Monday of week 2

change-of-measure design

Monday of week 1

Monday of week 2

balanced change-of-measure design

Illustration of various designs and daily periodic event density (dash lines are switching

points, and treated intervals are shaded) on Mondays in a two-week experiment
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Illustration of empirical Bayes design approach in the case study

For each of the six switchback designs, consider three average interval lengths:

28, 56, and 112 minutes

Procedure of synthetic experiments

• Randomly select one experiment-market pair and use its two-week

historical experimental data

• Randomly draw one CEC from the empirical distribution of CECs

• Given a design, use CEC to calculate the cumulative effect at every time

point

• Add the cumulative effect to the two weeks of historical data to obtain

synthetic experimental data

• Estimate GATE

Repeat this procedure for 500 times
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Estimation errors in synthetic experiments
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Balanced Poisson duration switchback with an average interval length of 112

minutes reduces MSE by 33% compared to the status quo design
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Pyramid of effectiveness of design principles

Tune switching times

Choose interval lengths

Balance periodicity

•Minor bias, minor variance reduction

•Major bias, medium variance reduction

•Major variance reduction

Hierarchical structure in the effectiveness of design principles in the reduction of MSE

in the case study on ride-sharing platform

17



Related literature (incomplete list)

Most closely related to the recent literature on switchback designs

• Bojinov, Simchi-Levi, Zhao 2023; Hu and Wager 2022; Masoero et al.

2023; Ni, Bojinov, Zhao 2023; Li, Johari, Wager, Xu 2023; Chen and

Simchi-Levi 2023

We aggregate units to abstract away interference, but a growing literature

directly tackles interference using novel experimental design ideas

• Ugander et al. 2013; Eckles et al. 2017; Holtz et al. 2023; Bajari et al.

2023; Johari, Li, Liskovich, Weintraub 2022; Wager and Xu 2021

Related to some other designs in time-based experiments

• Doudchenko et al. 2019, 2021; Abadie and Zhao 2021; Xiong, Athey,

Bayati, Imbens 2023; Basse, Ding, Toulis 2023; Wu et al. 2022
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Analysis of Switchback Design



Setup

Directly analyze event-level data: n events in total between time 0 and T

Event density: f (t) : [0,T ]→ R+

• f (t) can be periodic, capturing the seasonality of human behavior

Marketplace outcome: Yt at time t, can be viewed as the average outcome of

all users in the marketplace

Event outcome: Y (i) ∈ {0, 1} for event i occurred at time ti , a noisy

measurement of the marketplace outcome

Y (i) = Yti + ε(i) ,

where the measurement error ε(i) has mean zero

Serial correlation in measurement errors of events close in time

Cov(ε(i), ε(j)) 6= 0 for ti 6= tj ,

caused by external factors like weather, supply conditions, and traffic
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Potential outcomes and GATE

With non-anticipating outcomes, the potential outcomes of the marketplace at

time t is

Yt(wt ,w s
t )

• wt ∈ {wu ∈ {0, 1}, ∀u ∈ [0, t]}: a realization of Wt , design of primary

experiment from time 0 to t

• w s
t ∈ {w s

u ∈ {0, 1}, ∀u ∈ [0, t]}: a realization of W s
t , design of

simultaneous experiment from time 0 to t

• One experiment is run simultaneously with the primary experiment, but

generalizable to many simultaneous experiments

Estimand of primary interest: Global average treatment effect (GATE)

δgate =

∫
δgatet f (t)dt

• δgatet = Yt(Wt = 1t ,W s
t = 0t)− Yt(Wt = 0t ,W s

t = 0t)

• 1t ∈ {wu = 1, ∀u ∈ [0, t]}, 0t defined analogously

• difference in average outcomes between when an intervention is deployed

indefinitely versus when it is absent
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Cumulative effect

Cumulative effect at time t given the treatment is employed from time t −∆t

to t

δcumt (∆t) = Yt(Wt = (0t−∆t , 1∆t),W s
t = 0t)− Yt(Wt = 0t ,W s

t = 0t)

where (0t−∆t , 1∆t) concatenates 0t−∆t and 1∆t
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Post-experiment estimation

Horvitz-Thompson (HT) estimator for GATE

δ̂gate =
1

n

n∑
i=1

[
WtiY

(i)

π
− (1−Wti )Y

(i)

1− π

]

where Wti ∈ {0, 1} is the treatment status of event i occurred at time ti . In

this paper, π = 1/2 is the probability of being treated

• Use outcomes of events in treated intervals to estimate the average

outcome under global treatment

• Use outcomes of events in control intervals to estimate the average

outcome under global control
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Design problem

Decision maker chooses the number of intervals M and the interval switching

points, aiming to reduce the MSE of GATE

E
[(
δ̂gate − δgate

)2
]
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Decomposition of bias and MSE

Assumptions

• Events are sampled i.i.d. from density function f (t)

• Carryover effect can be parametrized by a kernel function

• Each interval is treated with probability 1/2, independently of other

intervals, for both primary and simultaneous interventions

Decomposition of bias

E
[
δ̂gate − δgate

]
= Bias(Ecarryover) + Bias(Esimul)

Decomposition of MSE

E
[
(δ̂gate − δgate)2

]
= [Bias(Ecarryover)]2 + Var(Emeas)

+ Var(Einst + Ecarryover) + E[E2
simul] + 2E[Esimul · (Einst + Ecarryover)]
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Role of balancing

Without balancing, Var(Einst + Ecarryover) scales with
(

Ξ(m) + 2µ
(m)

Y ctrl

)2

• Var(Einst + Ecarryover) arises from the randomness in treatment

assignments

• Ξ(m): average treatment effect δgatet in m-th interval

• µ
(m)

Y ctrl : average control outcome Yt(0t , 0t) in m-th interval

With balancing, Var(Einst + Ecarryover) scales with
(

Ξ(m)
)2

⇒ Balancing is particular effective when signal-to-noise ratio is low (the case

in the ride-sharing platform)
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Role of selecting switching lengths

Lengthening switching lengths reduces Bias(Ecarryover)

• Bias(Ecarryover) arises from using outcomes of events in treated and

control intervals to approximate global treated and control outcomes

Shortening switching lengths reduces Var(Einst + Ecarryover) and Var(Emeas)

• Var(Emeas) arises from variance and covariance of measurement errors
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Role of tuning switching endpoints

Switches at high event density times reduces Var(Emeas)

Switches at low event density times reduces Bias(Ecarryover)
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Role of offset parameter q in periodic event density (number of switches M = 4)
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Role of tuning switching endpoints (cont.)

Poisson switchback with proper staggering switching points can be more

effective than the fixed duration switchback
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K denotes the total number of experiments running simultaneously; M denotes the

number of switches
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Conclusion

This paper studies the analysis and design of simultaneous switchback

experiments in a highly generic setting

• Simultaneously capture the four realistic properties (carryovers, outcome

covariance, event density, and simultaneous interventions)

• Continuous time framework and analysis of event outcomes

• Empirical Bayes design using historical data: A case study on a

ride-sharing platform

• A decomposition of bias and MSE of the estimated GATE from any design

• A simulation study to explore the role of four realistic properties in

affecting the MSE of heuristic designs
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Supplementary
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Expression of Bias(Ecarryover)

The bias term Bias(Ecarryover) in the bias decomposition equals to

Bias(Ecarryover) =
M∑

m=1

I (m) − δco ,

where I (m) is the integrated carryover effect of treatments in Im on outcomes in

the same interval

I (m) =

∫
t∈Im

[
δcot

∫
t′∈Im

dco
t (t′)f (t′)dt′

]
f (t)dt

δcot (wt) is a carryover kernel that measures the intensity of the effect of

intervention ` at time t′ on the outcome at time t, so that the average

carryover effect equals

δcot (wt) = δcot ·
∫

wt′ · dco
t (t′)f (t′)dt′

⇒ Bias(Ecarryover) increases with M
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Expression of Var(Emeas)

The variance term Var(Emeas) in the MSE decomposition equals to

Var(Emeas) = 4
M∑

m=1

(
V (m)/n + C (m) · (n − 1)/n

)
,

where V (m) measures the variance of measurement error of any event in Im and

is defined as

V (m) =

∫
ti∈Im

Eε

[
(ε(i))2 | ti

]
f (ti )dti ,

and C (m) measures the covariance of measurement errors of any two events in

Im defined as

C (m) =

∫
ti ,tj∈Im

Eε

[
ε(i)ε(j) | ti , tj

]
f (ti )f (tj)dtidtj

⇒ As n→∞, C (m) dominates, C (m) = O(1/M2) and Var(Emeas) = O(1/M)

that decreases with M
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Expression of Var(Einst + Ecarryover)

The variance term Var(Einst + Ecarryover) in the MSE decomposition equals to

Var(Einst + Ecarryover) =
M∑

m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)2

+
M∑

m=1

∑
m′ 6=m

([
I (m,m′)

]2

+ I (m,m′)I (m′,m)

)
,

where Ξ(m) is integrated total treatment effect in Im and defined as

Ξ(m) =

∫
t∈Im

δgatet f (t)dt

µ
(m)

Y ctrl is the integrated global control outcome in Im and defined as

µ
(m)

Y ctrl =

∫
t∈Im

Yt(0t , 0t)f (t)dt

I (m,k) is the integrated carryover effect of treatments in Ik on outcomes in Im

I (m,k) =

∫
t∈Im

[
δcot

∫
t′∈Ik

dco
t (t′)f (t′)dt′

]
f (t)dt

⇒ The first part decreases with M while the second part increases with M
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Expression of Bias(Esimul)

The bias term Bias(Esimul) in the bias decomposition equals to

Bias(Esimul) =
M∑

m=1

S (m)

where S (m) measures the integrated bias from the treatment effects of

simultaneous intervention

S (m) =

∫
t∈Im

Φsimul
t f (t)dt ,

Φsimul
t is defined as

Φsimul
t = EW (−m)

[
δsimul
t (W (−m),W (m) = 1)− δsimul

t (W (−m),W (m) = 0)
]

and δsimul
t (W (−m),W (m)) is the expected treatment effects from the

simultaneous intervention at time t, conditional on W (−m) and W (m), formally

defined as

δsimul
t (W (−m),W (m)) = δsimul

t (Wt) = EW s
t

[Yt(Wt ,W s
t )− Yt(Wt , 0t) |Wt , t]

⇒ For the special case where the effects of main and simultaneous

interventions are additive, Bias(Esimul) = 0
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Expression of E[E2
simul]

The second-moment term E[E2
simul] in the MSE decomposition equals to

E[E2
simul] =

M∑
m=1

M∑
m′=1

S (m,m′)
var

For the special case where the effects of main and simultaneous interventions

are additive,

E[E2
simul] =

M∑
m=1

(∫
t∈Im

δs.gatet f (t)dt

)2

+
M∑

m=1

M∑
m′=1

(∫
t∈Im∩Ism′

δs.instt f (t)dt +

∫
t∈Im,t′∈Is

m′

δs.cot ds.co
t (t′)f (t)f (t′)dtdt′

)2

⇒ The first part decreases with M

⇒ The second part varies with how much Im overlaps with Ism′ ; staggering

the switching times of different interventions reduces the second part
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Expression of E[(Einst + Ecarryover) · Esimul]

The cross-term term E[(Einst + Ecarryover) · Esimul] in the MSE decomposition

equals to

E[(Einst + Ecarryover) · Esimul] =
M∑

m=1

M∑
m′=1

S (m,m′)
cov

For the special case where the effects of main and simultaneous interventions

are additive,

E[(Einst + Ecarryover) · Esimul] =
M∑

m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)(∫
t∈Im

δs.gatet f (t)dt

)

⇒ The covariance term decreases with M
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Setup: Treatment design

A switchback experiment is run a geographically determined market between

time 0 and T

Continuous time framework: naturally capture the stream of event data

Ex-ante, a treatment design for the whole experiment horizon is chosen

W = {Wt ∈ {0, 1}, ∀t ∈ [0,T ]}:

• Wt = 1: All users in the market are treated

• Wt = 0: Otherwise

Two-step design procedure:

• Partition the experimental horizon [0,T ] into M disjoint intervals

• Endpoints of M intervals: 0 ≤ t0 ≤ t1 ≤ · · · ≤ tM−1 ≤ tM = T

• m-th interval: Im = [tm−1, tm]

• Randomly choose the treatment assignment of each interval

• Primarily focus on the case with 1/2 treated probability
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Summary of contributions

We study the design and analysis of switchback experiments, accounting for all

four factors. For the design,

• Propose an empirical Bayes approach that uses knowledge from prior

experiments to inform the design of new experiments

• Illustrate this approach through a case study on a ride-sharing platform

• The best-perform design randomizes and, on average, doubles the

switching lengths than the status quo design with fixed lengths, yielding a

33% reduction in MSE
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Summary of contributions

We study the design and analysis of switchback experiments, accounting for all

four factors. For the analysis,

• A rigorous decomposition of bias and MSE of the estimated GATE

Two sources of bias:

• carryover effects from treatment at earlier times

• confounding effects from simultaneous interventions

Three sources of variance:

• measurement errors of outcomes and their covariance

• randomness of treatment assignments

• randomness in event occurrence times

• Three design insights:

• balancing periodicity reduces variance

• switching less frequently reduces bias from carryovers, but increases

variance from correlated outcomes

• randomizing interval start and end points reduces both bias and

variance from simultaneous experiments
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