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We study the design and analysis of experiments conducted on an aggregate unit over time, and outcomes

are measured on a sequence of events. The design problem is to partition the continuous time space into

intervals and switch treatment between intervals, in order to reduce the estimation error of the treatment

effect. Prior work has studied this problem when the effect of treatment carries over to future outcomes. We

observe that besides carryover effects, the estimation error depends on three other factors: nonuniform event

density, correlated event outcomes, and interference from simultaneous experiments. To account for these

factors, we propose a new approach to design experiments using a meta-analysis of historical data. This

approach is illustrated through a case study of a large corpus of experiments on a ride-sharing platform.

The case study shows balancing time heterogeneity to be especially beneficial for reducing estimation error,

followed by selecting interval lengths and endpoints. We then provide a careful bias-variance decomposition

of the estimated treatment effects, accounting for all four factors. The decomposition reveals that balancing

reduces variance by offsetting time heterogeneity between treated and control intervals. Selecting interval

lengths can find the best tradeoff between bias from carryover effects and variance from correlated event

outcomes. Fine-tuning interval endpoints can reduce both bias and variance from simultaneous experiments.

Finally, simulations are conducted to generalize our findings from the case study to other settings with

varying specifications.

Key words : Time-Based Experiment, Carryover Effect, Simultaneous Intervention, Event Analysis,

Treatment Effect Estimation, Ride-Sharing Platform

1. Introduction

Experimentation has become an increasingly popular and effective tool for testing and improving

social and business policy in digitally mediated economics and social settings. However, the scale

and complexity of modern digital settings create many scientific and statistical challenges for the

design and analysis of experiments.

Consider a ride-hailing platform where multiple teams would like to measure the effects of their

product changes through experiments, while only a limited number of markets are available for

experimentation. In this setting, designing and analyzing experiments can be challenging for four

prominent reasons. First, users exposed to new interventions may vary their behavior in ways
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that create interference and affect outcomes for other users on both the rider and driver side of

the marketplace (Chamandy 2016). Second, the interventions usually take time to be effective

and change the marketplace to a new equilibrium state, resulting in time-varying effects of the

intervention. Third, the significant variations and serial correlations in rider demand and driver

availability throughout the day and week complicate the analysis of the intervention effect. Fourth,

interventions tested simultaneously may interact with one another, complicating the measurement

of the marginal effect of each one. Due to these four reasons, developing reliable approaches that

allow for precise measurement of the intervention effects can be quite challenging, but is crucial

when deciding whether to roll out the new intervention.

A commonly used solution that makes it possible to measure the intervention effects is to run

experiments via time-based or temporal experimental designs rather than (the far more common)

cross-sectional designs. Time-based designs operate on a (few) aggregated units and randomly

switch between treatment and control over time for each unit, which are colloquially known as

“switchback designs” (Bojinov et al. 2023). Units’ longitudinal observations are then used to esti-

mate the treatment effects. These designs help to mitigate interference and have become popular

due to their applications in digital marketplaces. Prior to more recent applications, there is a long

history in medicine of designing an experiment using a single unit of observation and leveraging

longitudinal observations in medicine where it is known as an “n-of-1” trial (Mirza et al. 2017).

In this paper, we analyze switchback designs in a highly generic setting, where interventions are

applied in a continuous temporal space, and outcomes are measured on a sequence of events in this

space. We study how to partition the temporal space into intervals with alternating treatments

in these designs, in anticipation of precisely estimating a quantity called global average treatment

effects (GATE). GATE is an important estimand for decision-making that captures the difference in

average outcomes between when an intervention is deployed indefinitely (global treatment) versus

when the intervention is absent indefinitely (global control).

Our analysis captures the realistic data properties in digital marketplaces that complicate the

design and analysis of switchback experiments. We novelly do so through four distinct lenses. First,

we factor in the carryover effects of treatments on future event outcomes. Second, we consider the

nonuniform density of observed events, where an event can be a session of a rider checking price.

Third, we account for correlation in event outcomes stemming from unobserved (or unmodeled)

factors that create nuisance dependence among measurements; outcomes of events close in time

can be similar due to weather, traffic, or other external factors. Lastly, we consider the presence of

simultaneous experiments run by other teams on the same sequence of events, which may confound

effect estimates in finite samples.
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1.1. Summary of Contributions

We theoretically and empirically show how the four realistic data properties affect the estimation

efficiency from switchback experiments. We propose data-driven switchback designs that use prior

experiments in designing new experiments, which can effectively account for the realistic data

properties in digital marketplaces. Practitioners can use similar data-driven switchback designs

tailored to their empirical settings, when armed with prior experiments.

We start with a case study of a corpus of 890 prior experiments run in various markets on

a ride-sharing platform. We estimate a curve between cumulative effect and treatment time for

each experiment-market pair.1 To summarize the information in all the estimated curves, we use

interpolative decomposition, in which the top 10 curves explain 75% variation of all the curves.

Interestingly, the top curves show that the cumulative effect is not always monotonic in treatment

time and can switch signs. In these cases, the estimation of GATE is particularly challenging and

is prone to be biased.

We then illustrate the data-driven switchback designs by running synthetic experiments on real

data. The cumulative effect of synthetic intervention follows one of the top 10 curves. We compare

the estimation error of GATE for various heuristic designs when the cumulative effect varies and

other data properties are present. We identify a hierarchical structure in the effectiveness of design

principles in this case study: (a) balancing time heterogeneity (such as time-of-day effect) is the most

effective; (b) carefully selecting average switching periods is moderately effective; (c) fine-tuning

exact switching times is mildly effective.

To understand the hierarchical structure, we provide a rigorous decomposition of bias and mean-

squared error (MSE) of the estimated GATE from the standard Horvitz-Thompson estimators

(Horvitz and Thompson 1952). The bias is decomposed into two sources of errors: (a) carryover

effects from treatment at earlier times; (b) confounding effects from simultaneous interventions. The

MSE is decomposed into squared bias and variance, where the variance is affected by three sources

of randomness: (a) the measurement errors of event outcomes and their covariance, determined

by their distance in time; (b) the randomness of treatment assignments of focal and simultaneous

interventions; (c) the randomness in event occurrence times.

The decomposition together with a careful simulation study explains how the design principles

in the case study reduce the estimation error: (a) balancing time heterogeneities reduces all sources

of variance; (b) longer switching periods reduce bias from carryovers; (c) shorter switching peri-

ods reduce variance from the randomness in measurement errors and treatment assignments; (d)

properly staggering switching times of simultaneous interventions reduces both bias and variance

1 GATE equals the cumulative effect when the treatment time grows to infinity.
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from simultaneous interventions; (e) fine-tuning switching times based on event density reduces

variance from irregular event occurrences. These insights manifest that the hierarchical structure

identified in the ride-sharing setting is due to the low signal-to-noise ratio in most cases; once the

variance is reduced by balancing, bias dominates, and carefully choosing switching periods becomes

important.

1.2. Related Work

Our data-driven switchback design is most closely related to the recent literature on switchback

designs. Bojinov et al. (2023) first study the minimax optimal design of switchback experiments on

an experimental unit in the presence of temporal interference. Ni et al. (2023) then advances the

study to multiple experimental units in the presence of both temporal and spatial interference. Hu

and Wager (2022) concern the case of never fully vanishing carryovers and propose to use burn-in

periods in the estimator to reduce estimation error. Chen and Simchi-Levi (2023) propose a new

importance sampling estimator to improve statistical efficiency. We complement this literature and

show that, besides the carryover effect, nonuniform event density, correlation event outcomes, and

simultaneous interventions can affect the performance of switchback design. Due to these factors,

we show the value of using prior data and propose new designs to improve efficiency.

Our design is also related to a number of other designs in time-based experiments. One design is

the staggered rollout design for panel experiments (Xiong et al. 2023), where the design selects an

initial (and possibly different) treatment time for each unit. The objective is to precisely estimate

the treatment effect either under temporal interference (Xiong et al. 2023, Basse et al. 2023) or

network interference (Cortez et al. 2022, Han et al. 2022, Boyarsky et al. 2023). Another design

is the synthetic control design for panel experiments, where the design selects units to be treated,

allocates treatment to all of them in a single period, and forms a synthetic treated and control unit

for treatment effect estimation (Doudchenko et al. 2019, 2021, Abadie and Zhao 2021). Concerning

time heterogeneity, Wu et al. (2022) propose a design that groups sequentially arriving users into

consecutive pairs, and randomly treats one user in each pair. Our balanced design complements

Wu et al. (2022) and provides a solution to balance time heterogeneity when experimenting on an

aggregate unit.

We consider the data in the form of a stream of events and design the experiment for units that

are aggregated to a level where interference between users can be abstracted away. But we note

a growing literature directly tackles interference using novel experimental ideas. For example, on

network data, cluster-randomized designs are commonly used for mitigating interference (Ugander

et al. 2013, Eckles et al. 2017, Candogan et al. 2021, Holtz et al. 2023), where the clusters are

chosen to minimize edges that cut across clusters. Another popular method is the two-stage or
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multi-stage randomization, which has been used in public health (Hudgens and Halloran 2008,

Liu and Hudgens 2014), digital platforms (Ye et al. 2023a), political science (Sinclair et al. 2012),

and social science (Crépon et al. 2013, Baird et al. 2018, Basse and Feller 2018). In the two-sided

marketplace, multiple randomization (Bajari et al. 2023, Johari et al. 2022) that randomizes at

multiple sides are used and designs that perturb treatments near equilibrium outcomes (Wager

and Xu 2021). Li et al. (2021) characterize the bias and variance of such experiments and describe

how the design can be optimized in such settings. Besides using novel designs, there is a growing

literature on developing new treatment effect estimators and inferential theory accounting for the

interference (Chin (2018, 2019), Forastiere et al. (2021), Qu et al. (2021), Yuan et al. (2021), Leung

(2022, 2023), Farias et al. (2022) among others). Complementing this literature, our paper takes

an agnostic approach to the marketplace interference structure in the design and analysis.

Finally, this paper accounts for the impact of interventions tested simultaneously. When mul-

tiple interventions are simultaneously applied to the same units, factorial design (Fisher 1936) is

commonly used, which allows for estimating the effect of any treatment combination. However, the

design and estimation are complex with a large number of interventions (Dasgupta et al. 2015).2 Ye

et al. (2023b) provide a nice solution to this problem using debiased deep learning. In this paper,

we take a different perspective and study the design of the main intervention while being agnostic

about the design of simultaneous interventions.

2. Problem Setup

Suppose a decision maker runs an experiment from time 0 to T to study the effect of a new inter-

vention. For example, the intervention can be a new pricing, matching, or routing algorithm. Let

wt ∈ {0,1} be the treatment status at time t ∈ [0, T ], where wt = 1 indicates that the marketplace

is exposed to intervention ` (treatment) at time t, and wt = 0 indicates otherwise (control).

Before the experiment starts, the decision maker chooses the treatment design for the whole

experiment horizon, i.e., W = {Wt ∈ {0,1}, ∀t ∈ [0, T ]}. Since the treatment decisions need to be

made in a continuous time interval, the decision maker first partitions experimental horizon [0, T ]

into M disjoint intervals and then randomly chooses the treatment assignment of each interval. Let

0≤ t0 ≤ t1 ≤ · · · ≤ tM−1 ≤ tM = T be the endpoints that define the M intervals, let Im = [tm−1, tm]

be the m-th interval, and let |Im|= tm− tm−1 be the length of the m-th interval.

As the treatment decisions are made at the interval level, the treatment assignments for all times

within an interval are the same, i.e.,

wt =wt′ , for all t, t′ ∈ Im, for all m.

2 This is because the number of treatment combinations increases exponentially in the number of interventions.
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When the treatment assignments vary by interval, the design is referred to as the switchback design

(Bojinov et al. 2023). We provide a few examples of switchback designs in Section 2.3.

The raw data available for analyzing the effect of intervention are at the event level, where each

event could be a rider opening the app and checking the price. Suppose there are n events occurring

in the marketplace between time 0 and time T . Let Y (i) be the outcome of event i that occurred

at time ti, where we assume the occurred time ti is a random variable. For example, Y (i) could be

a binary variable indicating whether the rider requests a ride or not. Let f(t) : [0, T ]→R+ be the

density function from which events are sampled. We assume that f(t) is bounded from below and

from above for all t. For simplicity, it is possible to consider the uniform event density as in Example

2.1. However, in many realistic settings, the density of events will exhibit periodic patterns due to

the seasonality of human behavior. For instance, in ride-hailing, many ride requests occur during

commute times, and relatively few occur during the late evening on weeknights. Then it is possible

to consider periodic event density as in Example 2.2.

Example 2.1 (Uniform event density). If events are equally likely to occur at any time in

the experiment, then f(t) = 1/T for all t∈ [0, T ].

Example 2.2 (Periodic event density). If there is a periodic pattern in event density, then

it is possible to use the periodic function, such as f(t) = a1 sin(a2t+ a3) + a4 for some constants

a1, a2, a3 and a4 and t∈ [0, T ], to capture the periodic event density. See Figure 1 for an example.

Besides the event outcome, we additionally define the marketplace outcome at time t as Yt. The

marketplace outcome Yt can be viewed as the average outcome of all users in the marketplace,

such as the average request rate at time t. Then the event outcome is a noisy measurement of the

marketplace outcome, i.e., for all i,

Y (i) = Yti + ε(i) ,

where the measurement error ε(i) has mean zero and bounded variance. For example, when Y (i) is

binary indicating whether rider i requests a ride, we can model Y (i) as a random draw from the

Bernoulli distribution with probability P(Y (i) = 1) = Yti of being 1.

Importantly, measurement errors of events that are close in time can be correlated:

Cov[ε(i), ε(j)] 6= 0 for ti 6= tj .

The correlation can be caused by external factors like weather, supply conditions, and traffic. This

correlation creates a nuisance dependence between event outcomes, which can affect the resulting

variance of treatment effect estimates.

We further define the potential outcomes of the marketplace. Here we account for the possibility

that other decision makers may run experiments simultaneously to test the effect of other interven-

tions. Let us refer to the experiment that the main decision maker runs as the main experiment.



7

Suppose K experiments are run simultaneously in addition to the main experiment. We allow K

to be zero or nonzero. When K is zero, no experiment is running simultaneously with the main

experiment. Let the treatment designs of the K simultaneous experiments be W s
1 , · · · ,W s

K , where

W s
` = {W s

`,t ∈ {0,1}, ∀t ∈ [0, T ]} for `= 1, · · · ,K. We assume that the treatment designs of simul-

taneous experiments are chosen independently of the main experiment and independently of one

another. We primarily focus on the case where the main decision maker is agnostic to the treatment

decisions of simultaneous experiments. We further assume the non-anticipating outcome, i.e., the

outcome at time t is only affected by the treatment assignments up to time t (Basse et al. (2023)

among others). We use Wt = {Wu,∀u∈ [0, t]} and W s
`,t = {W s

`,u,∀u∈ [0, t]} to denote the treatment

assignments of the main and `-th simultaneous experiment up to time t.

With simultaneous interventions and non-anticipating outcomes, the potential outcomes of the

marketplace at time t are defined as

Yt(wt,w
s
1,t, · · · ,ws

K,t) ,

where wt is a realization of Wt and ws
`,t is a realization of W s

`,t for all `.3 The marketplace

outcome satisfies Yt = Yt(Wt,W
s
1,t, · · · ,W s

K,t). Given treatment designs Wt,W
s
1,t, · · · ,W s

K,t and

event occurrence time ti, there is no randomness in Yti anymore, and the randomness in Y (i) purely

comes from the measurement error ε(i).

Note that the definition above generalizes the standard, binary definition of potential outcomes

under the stable unit treatment value assumption (SUTVA) in two aspects. First, this definition

allows potential outcomes to be jointly affected by the main and K simultaneous interventions.

Second, this definition allows for the existence of carryover effects: the potential outcome of t is

not only affected by the treatment status at t but also the treatment assignments at other times.

2.1. Estimands

Post-experiment, the main decision maker uses the observed event outcomes {Y (i)}i∈[n] and treat-

ment assignments W to estimate the effect of the intervention. The objective is to decide whether

to deploy the intervention indefinitely. Based on this objective, the estimand of primary interest is

the global average treatment effect (GATE), which measures the difference in average outcomes over

time when an intervention is deployed indefinitely (global treatment) versus when an intervention

is absent (global control). We formally define the GATE as

δgate =

∫
δgatet f(t)dt ,

3 Suppose both the main intervention and simultaneous interventions are not applied to times outside of the experi-
ment duration, i.e., wt = 0 and ws

`,t = 0 for t 6∈ [0, T ]. Therefore, there are no carryover effects from times outside of the
experiment duration, R\[0, T ], to the experiment duration, [0, T ]. It is then reasonable to define potential outcomes
only using treatment assignments within the experiment duration.
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which is the average of the total treatment effect δgatet at time t weighted by the event density f(t).

The total treatment effect δgatet at time t is defined as

δgate`,t =Yt(1t,0t, · · · ,0t)−Yt(0t,0t, · · · ,0t) ,

where 1t = {wu = 1, ∀u ∈ [0, t]} and 0t = {wu = 0, ∀u ∈ [0, t]} denote being and not being in the

treatment state for a time duration of t, respectively. In the definition of GATE, simultaneous

interventions are held in the global control state. This definition makes sense as the main decision

maker is interested in the effect of the main intervention, while holding other conditions as the

status quo.

When the intervention has not been employed indefinitely, the decision maker may also want to

learn how the treatment effect varies with the treatment duration. We define the cumulative effect

at time t given the treatment duration t′ as

δcum`,t (1t′) =Yt((0t−t′ ,1t′),0t, · · · ,0t)−Yt(0t,0t, · · · ,0t) .

Based on this definition, the cumulative effect δcum`,t (1t′) converges to the total treatment effect δgate`,t

as the treatment duration t′ grows to infinity, i.e.,

δgate`,t = lim
t′→∞

δcum`,t (1t′) .

However, it is worth noting that an infinite treatment may not be necessary for the cumulative

effect to stabilize and converge to the total treatment effect. Gaining insights into both the necessary

duration for convergence and the dynamics of the cumulative effect is valuable for the decision

maker. These insights are helpful for understanding the mechanism of how the treatment affects

the outcome and designing more efficient experiments.

2.2. Post-Experiment Estimation

We propose to use the Horvitz-Thompson (HT) estimator (Horvitz and Thompson 1952) that

estimates δgate from the observed event outcomes and treatment design:

δ̂gate =
1

n

∑
i

(
Wti

π
− 1−Wti

1−π

)
Y (i) =

1

n

∑
i

αtiY
(i), (2.1)

where αti =
Wti
−π

π(1−π) is a normalized weight, and

π=

∫
t∈[0,T ]

E[Wt]f(t)dt

is the fraction of treated times under intervention `.



9

We use the HT estimator for three reasons. First, it does not rely on an assumption about

carryover mechanisms. Second, it does not rely on assumptions about how event outcomes are cor-

related in time. Third, it does not require the knowledge of treatment assignments of simultaneous

interventions. Due to these three reasons, the HT estimator is flexible and broadly applicable to a

wide range of settings in practice.

However, the flexibility of the HT estimator comes at a cost. First, the HT estimator could

be biased due to the carryover effect of the same treatment at other times. The HT estimator

approximates the outcomes under global treatment by the event outcomes in treated intervals and

approximates the outcomes under global control by the event outcomes in control intervals. When

the carryover effect is zero, i.e., δcot (w) = 0, the approximation error is zero. For general cases, the

approximation error is non-zero, and the HT estimator is biased. The bias scales with the size of

the carryover effect. Second, the HT estimator can have a large variance, since the effective sample

size is affected by the correlation of event outcomes at different times and the HT estimator does

not optimally weight observations. Third, the HT estimator could have a confounding bias from

simultaneous interventions when the treatment designs of two interventions are not orthogonal in

finite samples.

It is possible to reduce the estimation error of GATE in two ways. First, we can use a better

treatment design, which is the main focus of the remaining sections. We compare the performance

of various designs using an empirical study in Section 3, and identify several useful design principles

in reducing the estimation error. In Section 4, we provide derive a bias-variance decomposition of

the estimation error that shows how different sources of errors trade-off. In Section 5, we conduct a

comparative study on simulated data to show how each source of errors can be reduced by making

appropriate design choices.

Second, we can use a more efficient estimator for GATE by leveraging prior knowledge of car-

ryover and correlation mechanisms and information on other interventions. Specifically, to reduce

the carryover bias, we can specify the structure of the carryover mechanisms and estimate instan-

taneous and carryover effects, and use these quantities to estimate GATE. To reduce the variance

from correlated outcomes, we can specify the structure of the correlation mechanisms and use the

structure to reweight the event outcomes. If we are aware of the treatment designs of experiments,

we can simultaneously estimate the treatment effects of all interventions and reduce confounding

bias from simultaneous experiments. For example, we can use the generalized least squares (GLS)

estimators that simultaneously estimate the instantaneous and carryover effects for all interven-

tions, while taking advantage of the inverse error covariance weighting. GLS can be more efficient

when the model specification in GLS is accurate. In the following sections, our results are based

on the HT estimator for the simplicity of exposition and for its benefit of being agnostic to model
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specification. However, the insights from our analysis generally carry over to alternative estima-

tors.4

2.3. Switchback Design

Before the experiment starts, the decision maker chooses the number of intervals M and the

interval switching points 0≤ t1 ≤ · · · ≤ tM−1 ≤ T , aiming to reduce the estimation error of GATE,

post-experiment. An important metric for the decision maker is the MSE of δ̂gate, defined as

EW,ε,t
[(
δ̂gate− δgate

)2]
(2.2)

where the expectation is taken with respect to the treatment designs W ,W s
1 , · · · ,W s

K , the mea-

surement errors in event outcomes ε(1), · · · , ε(n), and the event occurrence times t1, · · · , tn. Here

we focus on the randomized designs, where each time period is equally likely to be treated or

untreated, i.e., P(Wt = 1) = 1/2 and P(W s
`,t = 1) = 1/2 for all ` and t.

In Section 4, we provide the expression of MSE as a function of the interval endpoints. The

function is highly complex and nonconvex, so finding the global optimal solution is generally

infeasible. Instead we focus on the evaluation of the following three types of heuristic designs, in

which cases the decision maker only needs to choose two parameters, and the design problem is

substantially simplified. The first type is the fixed duration switchback (Example 2.3), which has

constant interval lengths and is most commonly used in practice. The second type is the Poisson

duration switchback (Example 2.4), where the length length is random and generated by the

Poisson duration. We use Poisson duration switchback to explore the effect of randomizing interval

lengths and switching times on the estimation error of GATE. The third type is the change-of-

measure switchback (Example 2.5), which has constant interval lengths after changing the measure

of nonuniform event density to uniform density. We use change-of-measure switchback to explore

the effect of accounting for nonuniform density in the design.

Example 2.3 (Fixed duration switchback). The first interval starts at time t0 = q for some

q < T/M , and the length of all the intervals besides the last one is p= T/M . The endpoints are

then equal to tm =m · p+ q for all m.

Example 2.4 (Poisson duration switchback). The first interval starts at time t0 = q. The

length of each interval tm− tm−1 is randomly drawn from the Poisson distribution with the mean

parameter λ= T/M . We sum the lengths of the first to the m-th intervals to obtain the value of

the endpoint t`m.5

4 See Xiong et al. (2023) for a few examples showing that the effective design principles are robust to the choice of
the estimator of treatment effects.

5 If the endpoints of some intervals are bigger than the experiment duration (i.e., there exists some M̄ such that
tm′ > T for m′ ≥ M̄), then we set the endpoints of these intervals to T (i.e., set tm′ to T for m′ ≥ M̄ and then the
lengths of the last M − M̄ are zero).
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fixed duration design

balanced fixed duration design

Poisson design

balanced Poisson design

change-of-measure design

balanced change-of-measure design

periodic event density

Figure 1 Illustration of various designs and periodic event density (dash lines are switching points, and treated

intervals are shaded).

Example 2.5 (Change-of-Measure Switchback). The first interval starts at time t0 = q

for some q that satisfies
∫ q
0
f(t)dt < 1/M . For the remaining endpoints, they are chosen in a way

that the event occurrence probability is the same across intervals, i.e.,
∫ tm+1

tm
f(t)dt= 1/M .

Figure 1 illustrates the switching points of the three designs under the periodic event density.

The Poisson duration switchback has similar, but slightly different, interval lengths compared to

the fixed duration switchback, due to the randomness in switching times of the Poisson duration

switchback. The change-of-measure switchback is the same as the fixed duration switchback under

the uniform event density, but they are different under irregular event density. Under the periodic

density, the change-of-measure design has much shorter interval lengths in times of high density

and much longer interval lengths in times of low density, as compared to the other two designs.

Besides the three types of heuristic designs for choosing interval endpoints, we consider the

following balanced design that imposes restrictions on the randomness of treatment assignments.

Example 2.6 (Balanced Randomized Design). Suppose for t≤ T/2, f(t) = f(t+T/2) and

Yt(wt,w
s
1,t, · · · ,ws

K,t) = Yt+T/2(wt+T/2,w
s
1,t+T/2, · · · ,ws

K,t+T/2). For t > T/2, the treatment assign-

ment at time t is opposite to that at time t−T/2, i.e., W`t = 1−W`,t−T/2.

For example, when a balanced randomized switchback is used in a two-week experiment, the

treatment assignments of the second week are opposite to those of the first week. As the het-

erogeneities in the outcomes tend to have a periodic pattern by week, the balanced design in a

two-week experiment creates matched pairs for the same time in a week.6 As shown in the following

sections, balancing is quite useful for the reduction of MSE.

In addition, we show in the following sections the performance of various designs the assumptions

on carryovers, outcome covariance, event density, and simultaneous interventions. The optimality

6 Balancing the time heterogeneity is found effective in reducing variance in the nonstationary a/b tests (Wu et al.
2022).
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of designs also depends on these assumptions. Therefore, making appropriate assumptions is crucial

for choosing a switchback design before the experiment starts. In Section 3, we analyze the historical

control and experimental data on a ride-sharing platform. The analysis provides guidance on how

to make reasonable assumptions, and shows how the assumptions imposed impact the performance

of various designs.

3. A Case Study on Ride-Sharing Platform

In this section, we analyze historical data from a ride-sharing platform and explore strategies for

designing more efficient experiments. We have access to two sets of historical data. The first data

set consists of the event-level data of the top 50 regions between June 2022 and March 2023,

referred to as the historical control data thereafter. The second data set includes the event-level

data of a large corpus of experiments conducted between June 2021 and March 2023, referred to as

the historical experimental data thereafter. In both data sets, each event represents a rider session

started from opening the app. The outcome is binary denoting whether the rider requested the

ride (Yti = 1) or not (Yti = 0).

In Section 3.1, we perform an exploratory analysis on both data sets and conduct a meta-analysis

of the dynamics of cumulative effects using historical experimental data. In Section 3.2, we conduct

synthetic experiments using the estimated cumulative effects from meta-analysis and evaluate the

performance of various designs. We identify a hierarchical structure of the effectiveness of design

principles in reducing the estimation error of GATE.

3.1. Analysis of Historical Data

The setup introduced in Section 2 encompasses considerations such as event density, measurement

errors, and carryovers. In this subsection, we show the estimates of these components from the

historical data. The insights gained can be used as guidance on imposing reasonable assumptions

on these components when designing a new experiment.

3.1.1. Event Density Figure 2 shows the estimated event density f(t) from the historical

control data across different minutes in a week. There are two main observations. First, the event

density has a periodic pattern, with high density during the peak hours, such as 6 PM, and low

density during the off-peak times, such as 3 AM. Second, during peak hours on weekends (Fridays,

Saturdays, and Sundays), the event density is higher than that during the peak hours on weekdays.

3.1.2. Global Control Outcomes and Heterogeneous Measurement Errors Figure 2

shows the standardized global control outcome (i.e., Yt(0t, · · · ,0t) subtracted by its mean and

divided by its standard deviation) across various minutes in a week. The average global control

outcome has a periodic pattern and is generally higher during the daytime.
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Figure 2 Event density, standardized mean control outcome (denoted by ZµY,t), and standardized heteroscedastic

measurement error (denoted by Zσt) from Monday 12 AM to Sunday 11:59 PM.

Figure 2 further shows the standardized estimated standard error of measurement errors across

various minutes in a week. We estimate the standard errors by assuming that the event outcome

is drawn from a Bernoulli distribution with the probability of the average conversation rate (i.e.,

global control outcome) being the value of one. The standard error is heteroscedastic and has a

periodic pattern, similar to that of the event density and global control outcome. An interesting

observation is that the standard error of measurement errors tends to be lower in times of high

event density, and higher in times of low event density. The intuition is that during periods of high

event density, there are more events to be averaged over in a minute, resulting in a lower standard

error; conversely, during times of low event density, the standard error tends to be higher.

3.1.3. Meta-Analysis of Historical Experiments We analyze a large corpus of the exper-

iments run between June 2021 and March 2023 to construct a prior on the treatment mechanism.

Some experiments are run on multiple regions and over different durations. To obtain high-quality

experimental data, we focus on the experiments run for the full two weeks (were not stopped early)

on larger regions, were effective, and were not an airport test. These filter criteria leave us with

149 two-week experiments run on 114 regions with 890 distinct experiment-region pairs in total.

These experiments employ a fixed-duration switchback design with a constant interval length

of 56 minutes. We fit a curve of cumulative effects δcum`,t (1t′) versus treatment duration t′ for each

experiment-region pair. To achieve this, we only use the intervals whose preceding interval is the

control interval, to prevent carryover effects from the previous treatment interval. We then calculate

the difference in outcomes between the treated and control intervals for every minute since the

switch. For each experiment-region pair, we obtain a cumulative effect curve – a 56-dimensional

vector where the j-th entry represents the cumulative effect of treating the region for j minutes.

We then obtain 890 cumulative effect curves, one for each experiment-region pair. To summarize

the information and reduce dimensionality in these curves, we apply interpolative decomposition.

Figure 3 shows the top 10 curves from the decomposition. These 10 curves can explain approxi-

mately 75% variation across all 890 curves, demonstrating a substantial reduction in dimensionality.
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Figure 3 Estimated cumulative effects δcum
`,t (1t′) (black dots) for t′ ∈ {1, · · · ,56} minutes and their smooth

quadratic curves (blue curves).

Moreover, these 10 curves can be considered as basis functions to generate a new cumulative effect

curve for a new treatment. To locally smooth the fitted (nonsmooth) curve, we subsequently a

quadratic fit.

Two important observations arise from the smoothed cumulative effect curves. First, it is quite

common (8 out of 10 curves) that the sign of cumulative effects switches as the treatment duration

varies. This suggests that the treatment may first be effective in increasing the conversion rate

and then become ineffective. The opposite case, where the treatment is first ineffective and then

becomes effective, is also likely to happen. Second, in many cases, the cumulative effects do not vary

monotonically with the treatment duration. For example, the cumulative effects can first increase

and then decrease, or vice versa, with the treatment duration. In summary, the stabilization and

convergence of cumulative effects to the GATE can take dozens of minutes. This observation is

robust to the polynomial degree in the smoothed curve. See Figures 11 and 12 for the linear and

cubic fits of cumulative effects, respectively.

3.2. Synthetic Experiments

We run synthetic experiments on historical data using various heuristic switchback designs. Results

from synthetic experiments illustrate the efficacy of different design principles in reducing the

estimation error of GATE in realistic (ride-sharing) settings. Based on the insights from synthetic

experiments, decision makers can select specific switchback designs tailored to their specific setting.

The designs selected from this approach are referred to as the data-driven switchback designs.

3.2.1. Setup of Synthetic Experiments We consider the following six switchback designs

to run synthetic experiments: fixed duration (FD), balanced fixed duration (bal. FD), change-of-

measure (CM), balanced change-of-measure (bal. CM), Poisson duration (Poisson), and balanced

Poisson duration (bal. Poisson) switchback designs. For each design, we vary the “average interval

length” across three settings: 28, 56, and 112 minutes. In the Poisson duration switchback, the

“average interval length” corresponds to the mean parameter λ. In the change-of-measure design,

the “average interval length” represents the event occurrence probability in an interval multiplied

by the experiment duration.
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Figure 4 Estimation error of various switchback designs when cumulative effects follow one of the top 10 smoothed

cumulative effect curves and when one experiment runs simultaneously with the main synthetic experiment.

We conduct two types of synthetic experiments. In the first type, no other experiments run

simultaneously with the main synthetic experiment. Here, we randomly draw a region from the 50

regions in the historical control data, and then randomly draw a consecutive two weeks of historical

control data for this region. In the second type, one experiment runs simultaneously with the main

synthetic experiment. Here, we randomly select one experiment-region pair and use its two-week

historical experimental data. In both types, we assume that the main synthetic intervention has

not been applied to the historical (control or experimental) data.

We then use the sampled historical data along with each of the six switchback designs to generate

synthetic experimental data. This process requires the specification of the cumulative effects of the

treatment. For a practically relevant specification, we use the smoothed curves of cumulative effects

in Figure 3. Specifically, we sample one curve, which determines the cumulative effects for each

treatment duration. Using this curve and a chosen switchback design, we calculate the cumulative

effect at every time period. Finally, we add the cumulative effect to the sampled historical data to

obtain the synthetic experimental data.

Next, we apply the HT estimator to synthetic experimental data to estimate GATE and compute

the estimation error of GATE using the sampled curve. To obtain the MSE of GATE, we sample

100 distinct two-week-region pairs of historical data. For each curve and each switchback design,

we use these 100 pairs to generate 100 synthetic experimental data sets, which are then used to

calculate the MSE of GATE.

3.2.2. Results Figure 4 shows the MSE of the estimated GATE for the six switchback designs

when one experiment runs simultaneously. The cumulative effects follow one of the ten smoothed

curves shown in Figure 3. Figure 5 uses a hierarchical structure to summarize the effectiveness of

various design principles in reducing the MSE from all our simulation results.
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Figure 5 Hierarchical structure in the effectiveness of design principles in reducing MSE in the case study on a

ride-sharing platform.

As shown in Figure 4, balancing time heterogeneity, achieved by using balanced switchback

designs in Example 2.6, is the most effective in reducing the MSE. This efficacy stems from the

inherent heterogeneity in weekly time patterns within the data. Balancing time heterogeneity

operates to cancel out the variance term associated with the mean control outcome in the MSE,

a point that will be formally explained in Section 4 below. When the treatment only marginally

affects the mean outcome, this balancing act is particularly effective for variance reduction.

Carefully choosing the interval lengths can also effectively reduce the MSE. When switchback

designs are not balanced, shortening interval lengths helps to reduce the MSE, because fast switch-

ing can reduce variance, a point that will be formally shown in Section 4 below. When switchback

designs are balanced, lengthening interval lengths helps to reduce the MSE, because bias is a major

concern once designs are balanced, and less frequent switching can reduce bias, a point that will

also be shown in Section 4 below.

After the interval lengths are selected, tuning the switching times can further reduce the MSE.

A heuristic tuning approach is to choose between fixed duration, change-of-measure, and Poisson

duration. Depending on different scenarios of cumulative effects, a judicious choice among these

three designs can reduce the MSE. Averaging the MSE across different scenarios, Figure 13 in

Appendix A shows that the balanced Poisson switchback with long interval lengths has the lowest

average error. A key factor contributing to this is that the randomization of switching times in

the Poisson switchback reduces the confounding effect from simultaneous experiments. This factor

is supported by comparing results with and without a simultaneous experiment in Figure 13 – in

the absence of a simultaneous experiment, the improvement of the balanced Poisson design is not

as apparent as in the case with one simultaneous experiment. This point will be rigorously shown

through theoretical analysis in Section 4 below.

We further conduct a robustness check and run synthetic experiments using both the smoothed

linear and cubic curves of cumulative effects. As shown in Figures 14 and 16 in Appendix A, the

results are robust to the polynomial degrees of smoothed cumulative effect curve. However, we
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note that the MSE is generally larger when the smoothed curve has a higher polynomial degree.

This observation is due to the increased bias when fitting a flexible curve of cumulative effects that

allows for more variation with treatment duration.

4. Analysis of Switchback Design

In this section, we provide a precise decomposition of the bias and MSE for any switchback design.

The decomposition provides insights into how effects from treatments at earlier times, correlations

in event outcomes, and effects of simultaneous treatments affect the MSE. These insights explain

the mechanisms through which different designs affect the MSE.

We first lay out the assumptions required for the identification of treatment effects and for the

decomposition in Section 4.1. Subsequently, we introduce several interval-level statistics in Section

4.2. Finally, we present the decomposition in terms of these interval-level statistics in Section 4.3.

4.1. Assumptions

We begin by assuming that the sampling of events is exogenous and independent of the treat-

ment assignments of both the main and simultaneous interventions. This assumption holds true for

interventions that potential riders cannot discern a difference before opening the app and check-

ing prices, and consequently do not affect the event density, such as surge pricing algorithms or

matching algorithms.

Assumption 4.1 (Exogeneity of events). Events are sampled randomly and independently

from the density function f(t), and f(t) is independent of the treatment assignments of all inter-

ventions, W ,W s
1 , · · · ,W s

K.

Moreover, we impose an assumption on the structure of the treatment effect for exposition. We

first decompose the total treatment effect into the sum of the instantaneous treatment effect and

the carryover effect:

δgatet (wt) =wt · (Yt(et,0t, · · · ,0t)−Yt(0t,0t, · · · ,0t)︸ ︷︷ ︸
δinst
t

) +Yt(wt,0t, · · · ,0t)−Yt(et,0t, · · · ,0t)︸ ︷︷ ︸
δco
t (wt)

,

where the δinstt is the instantaneous effect of treatment at time t on the outcome at time t, and

δcot (wt) is the carryover effect of treatment assignments at earlier times on the outcome at time

t. For notation simplicity, we let δcot := δcot (1t) be the carryover effect under global treatment.

We then assume carryover effects from the treatments at other times are additive and can be

parameterized by a carryover kernel. Although this assumption can be relaxed, it comes at the

expense of cumbersome notations in the main results, though the insights are generally the same.
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Assumption 4.2 (Carryover effects). For every t, there exists a carryover kernel dcot (t′) that

measures the intensity of carryover effect from t′ to t and satisfies
∫
dcot (t′)f(t′)dt′ = 1, such that

δcot (wt) =δcot ·
∫
wt′ · dcot (t′)f(t′)dt′ .

The carryover kernel dcot (t′) can be quite general. Below, we provide two examples of carryover

kernels commonly used in practice. In the case of the non-anticipating outcome, dt(t
′) = 0 for all

t′ > t. Moreover, if the treatment assignments can only affect the outcomes for a duration of h<∞
in the future, then dt(t

′) = 0 for all t′ < t+ h, corresponding to the assumption of fixed duration

carryover effect imposed in the literature (Bojinov et al. (2023) among others).

Example 4.1 (Uniform carryover kernel). If the carryover intensity is uniform in t′ ∈
[t− h, t], but is zero outside this interval, then dcot (t′)∝ 1/h for all t′ ∈ [t− h, t] and dcot (t′) = 0 for

all t′ 6∈ [t−h, t].
Example 4.2 (Linear decay carryover kernel). If the carryover intensity decays linearly

in t− t′ for t′ ∈ [t− h, t], and is zero outside this interval, then dcot (t′)∝ t− t′ for all t′ ∈ [t− h, t]
and dcot (t′) = 0 for all t′ 6∈ [t−h, t]. See Examples in Figure 6.

Below we introduce an additive condition for the effects of main and simultaneous interventions.

This represents a special case of the confounding between the main and simultaneous interven-

tions. Under this condition, the decomposition of MSE is substantially simplified, making it more

interpretable.

Condition 1 (Additivity of Intervention Effects). The effects of main and simultane-

ous interventions are additive, i.e.,

Yt(w
′
t,w

s
1,t, · · · ,ws

K,t)−Yt(wt,w
s
1,t, · · · ,ws

K,t) = Yt(w
′
t,w

s′
1,t, · · · ,ws′

K,t)−Yt(wt,w
s′
1,t, · · · ,ws′

K,t),

where w′ and w are two treatment assignments of the main intervention, and ws
` and ws′

` are two

treatment assignments of simultaneous intervention ` for `= 1, · · · ,K.

When K = 1, Condition 1 always holds. For K > 1, this condition excludes intervention effects

from being synergistic (combining two interventions leads to a larger effect than expected) or

antagonistic (combining two interventions leads to a smaller effect than expected). Condition 1 is

reasonable for certain classes of distinct interventions; for example, we may often assume that a

pricing change and a routing change act via different mechanisms and are thus additive.

4.2. Interval-Level Statistics

We introduce several interval-level statistics that quantify carryover effects, correlations in mea-

surement errors, confounding effects from simultaneous interventions, and other components at the

interval level. These interval-level statistics serve as building blocks of the bias and MSE decom-

position in Section 4.3, and are crucial for interval partitioning in the design.
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Fraction of events. Let

µ(m) =

∫
t∈Im

f(t)dt

represent the fraction of events occurring in the interval Im. µ(m) ranges from 0 to 1 and the sum

of µ(m) over m equals to 1.

Example 4.3. If event density f(t) is uniform in t, then µ(m) = |Im|/T . Moreover, if the fixed

duration switchback is used, then µ(m) = 1/M .

Mean control outcome. Let

µ
(m)

Y ctrl =

∫
t∈Im

Yt(0, · · · ,0)f(t)dt

be the integrated global control outcome, Yt(0, · · · ,0), over times t in the interval Im.

Variance and covariance of measurement errors. Let the integrated variance of the measurement

error for events in the interval Im be

V (m) =

∫
ti∈Im

Eε
[
(ε(i))2 | ti

]
f(ti)dti ,

where Eε
[
(ε(i))2 | ti

]
represents the variance of measurement error for event i occurring at time ti

(as measurement error has mean zero).

Example 4.4. Suppose measurement errors are homoscedastic, that is, Eε
[
(ε(i))2 | ti

]
= σ2 for

all ti. If the event density f(t) is uniform in t, then V (m) = σ2|Im|/T . Additionally, if the fixed

duration switchback is used, then V (m) = σ2/M .

Next, let the integrated covariance between measurement errors of events in the interval I`m be

C(m) =

∫
ti,tj∈Im

Eε
[
ε(i)ε(j) | ti, tj

]
f(ti)f(tj)dtidtj ,

where Eε
[
ε(i)ε(j) | ti, tj

]
is the covariance between the measurement errors of event i occurring at

time ti and event j occurred at time tj.

In practical settings, patterns often exist in how the covariance Eε
[
ε(i)ε(j) | ti, tj

]
varies with ti

and tj, e.g., decays monotonically or periodically with the distance between ti and tj. Therefore, a

kernel function can be used to parameterize and capture the patterns in Eε
[
ε(i)ε(j) | ti, tj

]
. See two

examples in Figure 6.

Integrated total treatment effects. Let

Ξ(m) =

∫
t∈Im

δgatet f(t)dt

be the integrated total treatment effect δgatet over times t in the interval Im. Following the definition

of δgate, the sum of Ξ(m) over m equals δgate. Moreover, if δgatet is constant in t, then Ξ(m) = δgateµ(m)

for any m.
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(a) Carryover kernel (b) Covariance kernel

Figure 6 Illustration of carryover and covariance kernels. Time difference denotes t′ − t in the carryover kernel

dco
t (t′). If t′− t < 0, then dco

t (t′) = 0. The interpretation of time difference is analogous to the covariance kernel.

Integrated carryover effects. Let

I(m,k) =

∫
t∈Im

[
δcot

∫
t′∈Ik

dcot (t′)f(t′)dt′
]
f(t)dt

be integrated carryover effect of treatments at times in the interval Ik on outcomes at times in

the interval Im. For simplicity in notation, we let I(m) = I(m,m) be the integrated carryover effect

of treatments on outcomes in the same interval. The integrated carryover effect I(m,k) increases

with the length of both Im and Ik, and increases with the size of carryover effect δcot for t ∈ Im.

The sum of I(m,k) over both m and k, which is the integrated carryover effect of the treatment of

all intervals on the outcomes of all intervals, is equal to δco, the average of δcot over t. Moreover,

if the carryover effect δcot is constant in t, then the sum of I(m,k) over k, which is the integrated

carryover effect of the treatment of all intervals on the outcomes in the interval Im, is equal to

δcoµ(m). Therefore, we can view I(m,k) as the “building blocks” of δco.

Confounding effects from simultaneous interventions. For any time t, let

δsimul
t (Wt) =EW s

1,t,··· ,W
s
K,t

[
Yt(Wt,W

s
1,t, · · · ,W s

K,t)−Yt(Wt,0t, · · · ,0t) |Wt, t
]

be the expected treatment effects from the simultaneous interventions at time t, conditional on Wt.

Here the expectation is taken with respect to the distribution from which the treatment designs

of simultaneous interventions are drawn. If the simultaneous interventions have nonzero treatment

effects, then δsimul
t (Wt) is generally nonzero, which can then bias the HT estimator.

We introduce a quantity below that measures the integrated bias from the treatment effects of

simultaneous interventions

S(m) =

∫
t∈Im

Φsimul
t f(t)dt ,

where Φsimul
t is defined as

Φsimul
t =EW (−m)

[
δsimul
t (W (−m),W (m) = 1)

]
−EW (−m)

[
δsimul
t (W (−m),W (m) = 0)

]
.
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Here W (m) and W (−m) are the treatment assignment of interval Im and of all the intervals excluding

Im, respectively. Analogously, let W
s(m)
` be the treatment assignment of the m-th interval of the `-th

simultaneous intervention. As treatments are assigned at the interval level, given (W (m),W (−m)),

Wt is uniquely determined, so we can also write δsimul
t (Wt) as δsimul

t (W (−m),W (m) = 1).

The quantity Φsimul
t measures the imbalance of expected treatment effects from simultaneous

interventions at time t between when the m-th interval is treated versus when this interval is not

treated. Here the expectation is taken with respect to the distribution from which W (−m) is drawn.

If the imbalance Φsimul
t is larger, then the integrated bias from simultaneous interventions S(m) is

larger.

Note that Φsimul
t is zero in some special cases, such as when the effects of main and simultaneous

interventions are additive (Condition 1 holds), which is illustrated in the following example.

Example 4.5 (Additive effects). When Condition 1 holds, we have

Yt((W
(−m),W (m) = 1),W s

1,t, · · · ,W s
K,t)−Yt((W (−m),W (m) = 0),W s

1,t, · · · ,W s
K,t)

=Yt((W
(−m),W (m) = 1),0t, · · · ,0t)−Yt((W (−m),W (m) = 0),0t, · · · ,0t) .

We subtract both sides by the term on the right-hand side and take the expectation over

W s
1,t, · · · ,W s

K,t. We then obtain

δsimul
t (W (−m),W (m) = 1)− δsimul

t (W (−m),W (m) = 0) = 0

which implies that Φsimul
t is zero.

However, when the effects of main and simultaneous interventions are not additive (e.g., two

interventions are useful only when both are present), the HT estimator is generally biased and we

quantify the bias in the subsection below.

4.3. Main Results

We provide the decomposition of the bias and MSE of δ̂gate from the HT estimator in terms of

the interval-level statistics in Theorems 4.1 and 4.2 below. The decomposition shows how different

components in the outcome affect the estimation error of δ̂gate.

Theorem 4.1 (Estimation bias). Suppose Assumptions 4.1-4.2 hold, W (m) is independent of

m with P(W (m) = 1) = 1/2, and W
s(m)
` is independent of m with P(W

s(m)
` = 1) = 1/2 for `. The

estimation bias of δ̂gate is

EW,ε,t
[
δ̂gate− δgate

]
=Bias(Ecarryover) + Bias(Esimul) ,
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where

Bias(Ecarryover) =
M∑
m=1

I(m)− δco

Bias(Esimul) =
M∑
m=1

S(m) .

Theorem 4.1 shows there are two sources of bias. The first source of bias comes from the carryover

effects and is measured by Bias(Ecarryover). If carryover effects are zero, (i.e., δcot = 0 for all t), then

Bias(Ecarryover) = 0. If carryover effects are nonzero, then Bias(Ecarryover) quantifies the bias in the

HT estimator that arises from using direct treated and control outcomes to approximate globally

treated and control outcomes, respectively.

The second source of bias comes from the confounding effects of simultaneous interventions and

is measured by Bias(Esimul). In cases where the effects of main and simultaneous interventions are

additive, as illustrated in Example 4.5, S(m) is zero, resulting in Bias(Esimul) being zero as well.

However, when effects are not additive, Bias(Esimul) is generally nonzero and tends to increase with

the number of simultaneous experiments K and the size of treatment effects from simultaneous

interventions.

Both sources of bias can be reduced by properly choosing a switchback design. To mitigate the

bias from carryover effects, it is helpful to switch less frequently. This is evident in the scenario

of uniform event density and fixed-duration switchback. In this case, I(m) = δco(1/M − h/(2T ))

as shown in Example A.2, resulting in the carryover bias equaling |Bias(Ecarryover)|= δcoMh/(2T ),

which increases with the number of intervals M . To reduce the bias from simultaneous experiments,

randomizing the switching times, such as using Poisson duration switchback, is helpful. See Figure

9c below for an illustration, and Example A.3 in Appendix A.4 for a toy numerical example.

Next, we show the decomposition of the MSE of δ̂gate.

Theorem 4.2 (Mean-Squared Error). Suppose Assumptions 4.1-4.2 hold, W (m) is indepen-

dent of m with P(W (m) = 1) = 1/2, and W
s(m)
` is independent of m with P(W

s(m)
` = 1) = 1/2 for `.

The mean-squared error of δ̂gate is

EW,ε,t
[(
δ̂gate− δgate

)2
]

=Var(Emeas) + Bias(Ecarryover)2 + Var(Einst + Ecarryover)

+E[E2simul] + 2E[(Einst + Ecarryover) · Esimul] ,

where

Var(Emeas) = 4
M∑
m=1

(
V (m)/n+C(m) · (n− 1)/n

)
Var(Einst + Ecarryover) =

M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)2

+
M∑
m=1

∑
m′ 6=m

([
I(m,m

′)
]2

+ I(m,m
′)I(m

′,m)

)
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and

E[E2simul] =
M∑
m=1

M∑
m′=1

S(m,m′)
var

E[(Einst + Ecarryover) · Esimul] =
M∑
m=1

M∑
m′=1

S(m,m′)
cov

with S(m,m′)
var and S(m,m′)

cov defined in Equations (A.1) and (A.2), respectively, in Appendix A.3.

Theorem 4.2 demonstrates that, in addition to the bias terms, the MSE is affected by three

sources of variance. The first source of variance arises from the randomness in event measurement

errors and is quantified by Var(Emeas). It is worth noting that Var(Emeas) consists of two parts: the

first part V (m), which measures the variance of event measurement error, and the second part C(m),

which measures the covariance between measurement errors of two events. As the number of events

grows, the first part diminishes and the second part dominates. If the correlation in measurement

errors is persistent, then C(m) is larger, leading to a larger MSE.

The second source of variance stems from the randomness in treatment assignments of the main

intervention and is measured by Var(Einst +Ecarryover). The expression of Var(Einst +Ecarryover) shows

that: (1) it increases with the size of the instantaneous effect, as the term Ξ(m) increases with the

instantaneous effect; (2) it increases with the size of the carryover effect, as both Ξ(m) and I(m,m
′)

increase with the carryover effect; and (3) it increases with the scale of the mean outcome, as the

term µ
(m)

Y ctrl increases with the mean outcome.

The third source of variance arises from the randomness in treatment assignments of simulta-

neous interventions and affects E[E2simul]. In Proposition 4.1 below, we present the expression for

E[E2simul] under the condition of additive main and simultaneous effects. This expression shows

that this source of variance increases with the magnitude of instantaneous and carryover effects of

simultaneous interventions. Furthermore, this term increases with the overlap between intervals of

the main intervention and simultaneous interventions.

In addition to the bias and variance terms, the MSE includes a cross term E[(Einst + Ecarryover) ·
Esimul]. Proposition 4.1 below also provides the expression for this term under the condition of

additive main and simultaneous effects. Generally, if the variance terms from the main intervention

and simultaneous interventions are larger, then this cross term is larger.

Proposition 4.1. Under the assumptions in Theorem 4.2, if Condition 1 holds, then the bias

from simultaneous interventions Bias(Esimul) is zero and the variance from simultaneous interven-

tions is

E[E2simul] =
M∑
m=1

(∫
t∈Im

[ K∑
`=1

δs.gate`,t

]
f(t)dt

)2
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+
M∑
m=1

M∑
m′=1

K∑
`=1

(∫
t∈Im∩Is

`m′

δs.inst`,t f(t)dt+

∫
t∈Im,t′∈Is

`m′

δs.co`,t d
s.co
`,t (t′)f(t)f(t′)dtdt′

)2

,

and

E[(Einst + Ecarryover) · Esimul] =
M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)(∫
t∈Im

[ K∑
`=1

δs.gate`,t

]
f(t)dt

)
,

where δs.gate`,t , δs.inst`,t , δs.co`,t , ds.co`,t are the total treatment effect, instantaneous effect, carryover effect,

and carryover kernel of simultaneous intervention ` at time t, respectively, and Is`m is the m-th

interval of simultaneous intervention `.

The MSE decomposition provides insights into how to design switchback experiments to reduce

the MSE of GATE. First and foremost, the switching interval length has a mixed effect in reduc-

ing the MSE. Switching frequently reduces most variance and cross terms. The intuition is that

switching more frequently increases the number of “interval-level” observations, thereby increasing

the effective sample size.

To illustrate this more clearly, consider the setting of uniform event density and fixed-duration

switchback. In this context, Var(Emeas) = O(1/M) decreases with M , following that C(m) =

O(1/M 2) as shown in Example A.1. Moreover, the term
∑M

m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)2
= O(1/M) also

decreases with M , given that Ξ(m) =O(1/M) and µ
(m)

Y ctrl =O(1/M). Analogously, for the variance

from simultaneous interventions, both E[E2simul] and E[(Einst + Ecarryover) · simul] are O(1/M) under

the additivity condition.

On the other hand, switching frequently increases the carryover bias and some of the other

variance terms. This is because the carryover effects across intervals increase with switching fre-

quency. Therefore, with the tradeoff involved, the optimal value of M depends on the relative size

of instantaneous and carryover effects, the scale of the global control outcomes, and the duration

and mechanism of carryover effects.

Second, the choice of interval endpoints also matters for the MSE. To see this more clearly,

consider the setting of constant δgatet in t and constant Yt(0, · · · ,0) in t (equals to Ȳ ctrl). Then∑M

m=1

(
Ξ(m)

)2
= (δgate + 2Ȳ ctrl)2

∑M

m=1

(
µ(m)

)2
, which is minimized at µ(m) = 1/M for all m, i.e.,

equalizing the fraction of events in each interval. This implies that when event density f(t) varies

with t, this term can be reduced by switching more frequently in times of high event density and

less frequently in times of low event density.

In addition, the second term of E[E2simul] is affected by how much the intervals of the main

intervention overlap with the intervals of simultaneous interventions, and it is the largest when

the interval endpoints of the main intervention and simultaneous interventions are the same. This

implies that it is useful to stagger the switching times of different interventions to reduce E[E2simul].
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Last but not least, balancing time heterogeneity can reduce the MSE. Specifically, consider a

two-week experiment where potential outcomes in the second week are the same as those in the

first week, and the balanced design in Example 2.6 is used. Then under mild assumptions, the

mean control outcome µ
(m)

Y ctrl can be canceled out in both the variance term Var(Einst + Ecarryover)
and the cross term E[(Einst + Ecarryover) · Esimul]. The variance term is then equal to

Var(Einst + Ecarryover) =
M∑
m=1

(
Ξ(m)

)2
+

M∑
m=1

∑
m′ 6=m

([
I(m,m

′)
]2

+ I(m,m
′)I(m

′,m)

)
.

Furthermore, under Condition 1, the cross term is equal to

E[(Einst + Ecarryover) · Esimul] =
M∑
m=1

Ξ(m)

(∫
t∈Im

[ K∑
`=1

δs.gate`,t

]
f(t)dt

)
.

Canceling out µ
(m)

Y ctrl can substantially reduce the variance when the treatment effects are not more

than a few percent of the control outcome. This is exactly the case in our case study on a ride-

sharing platform. Therefore, Figure 4 shows that balancing time heterogeneity is particularly useful

for error reduction. In fact, the HT estimator coincides with the Hajek estimator when the balanced

designs are used, but this is not the case for unbalanced designs. The Hajek estimator is generally

more efficient than the HT estimator, from another perspective, explaining why balanced designs

are more efficient than unbalanced designs.

5. Simulation

In this section, we compute values for error components in the MSE, in the settings where error

components are on a similar scale, resulting in an interesting tradeoff in designing a switchback

experiment. We use fixed-duration designs in the base case to characterize the tradeoffs involved,

and the general insights carry over to other heuristic designs. In the base case, a linear decay

carryover kernel is used with a bandwidth of hcarryover = 60 (i.e., the duration of carryover effects

is 60 minutes). Moreover, a linear decay covariance kernel is used with a bandwidth of hcovariance =

60 (i.e., two event outcomes are correlated only if they are within 60 minutes apart). Both the

instantaneous and carryover effects are constant in time and equal to δinstt = 1 and δcot = 1 for all t.

In the base case, only one intervention is tested, and the experiment lasts one day, i.e., T = 1,440

minutes. We vary the parameters in the base case and illustrate how error components vary and

affect the performance of various switchback designs.

5.1. Instantaneous and Carryover Effects Only

Figure 7 illustrates the tradeoff between the bias from carryover effects, Bias(Ecarryover), and variance

from instantaneous and carryover effects, Var(Einst + Ecarryover). If the carryover effects last longer,

i.e., hcarryover is larger, then the bias Bias(Ecarryover) tends to be larger, and switching less frequently
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reduces the MSE from instantaneous and carryover effects, as shown in the comparison between

Figures 7a and 7b. The relative size between instantaneous and carryover effects also matters for

the tradeoff. If the instantaneous effect is relatively larger than the carryover effect, then switching

more frequently reduces the MSE, as shown in the comparison between Figures 7a and 7c.
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Figure 7 Tradeoff between error components from instantaneous and carryover effects. “carryover bias sq” denotes

Bias(Ecarryover)
2, “total effect var” denotes Var(Einst + Ecarryover), and “total effect mse” denotes the sum of the two.

Figure 7b varies hcarryover and Figure 7c varies δinst/δco, while holding other parameters at the base level. The orange

dot denotes the minimum “total effect mse”.

5.2. Total Treatment Effects with Measurement Errors

Figure 8 summarizes the tradeoffs between error components from total treatment effects and

measurement errors. Switching frequently generates more comparisons, which reduces variance

from measurement errors but also increases carryover bias from previous intervals. If correlation

in measurement errors are persistent (i.e., large hcovariance), then Var(Emeas) has a larger impact on

the MSE, and switching more frequently is helpful to reduce the MSE, as shown in the comparison

between Figures 8a and 8b. Similarly, if event outcomes are noisier with a larger Varσ,t, then

switching more frequently helps, as shown in the comparison between Figures 8a and 8c.
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Figure 8 Tradeoffs between error components from treatment effects and measurement errors. “total effect mse”

denotes the sum of Bias(Ecarryover)
2 and Var(Einst + Ecarryover), “meas var” denotes Var(Emeas), and “mse” denotes

the sum of “total effect mse” and “meas var”. Figure 8b varies hcovariance and Figure 8c varies Varσ,t, while holding

other parameters at the base level. The orange dot denotes the minimum “mse”.
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5.3. Simultaneous Interventions

Figure 9 shows the tradeoffs involved in the presence of simultaneous interventions. The MSE of

the main intervention is affected by three factors: the number of simultaneous interventions, the

interval duration, and the offset in switching times between simultaneous experiments. When more

experiments are run simultaneously, the optimal switching frequency increases. This is because

switching more frequently helps reduce the confounding effects of simultaneous interventions. More-

over, properly staggering the switching times of the main and simultaneous interventions also

decreases the MSE of the main intervention, with the effect being more pronounced when the

interval duration is longer due to the increased finite-sample correlation between the designs. As

shown in Figure 9c, Poisson switchbacks, which implicitly stagger through randomizing switching

times, can be more effective unless the fixed duration designs are staggered well.
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Figure 9 MSE with simultaneous interventions. “simul mse” denotes E[E2
simul], “simul×total” denotes E[(Einst +

Ecarryover) · Esimul], and “mse” denotes EW,ε,t[(δ̂gate − δgate)2]. Figure 9b varies K, while holding other parameters

at the base level and switching at the same times for all interventions. Figure 9c compares four designs: fixed

duration switchbacks with offset q = 0 for all interventions (i.e., fixed zero offset), fixed duration switchbacks with

offset q = p · j/(K + 1) for the j-th simultaneous intervention (i.e., fixed eq offset), Poisson switchbacks with offset

q ∼ Poisson(T/M) (i.e., Poisson rand offset), and Poisson switchbacks with offset q = p · j/(K + 1) for the j-th

simultaneous intervention (i.e., Poisson eq offset).

5.4. Periodic Event Density

In many realistic settings, the density of events will exhibit periodic patterns due to the season-

ality of human behavior. Figure 10 shows results from a periodic density using a fixed duration

switchback. When the design has a period that aligns with density, the offset parameter q deter-

mines how the alignment alters the bias and variance. Switching at times of high density yields

a design with low variance from measurement errors Var(Emeas). On the other hand, switching at

times of low density reduces carryover bias from the preceding interval Bias(Ecarryover) and reduces

MSE from treatment effects. Combining measurement errors and treatment effects, the optimal

switching times are somewhere in between high and low density times. Therefore, knowledge of the
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density of events can improve the efficiency of the design by leveraging the best absolute times for

bias- or variance-minimizing switching points.
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Figure 10 Role of offset parameter q in periodic event density. For the simplicity of exposition, T = 240 and M = 4,

while other parameters are set at the base level.

6. Discussion and Conclusion

This paper studies the design and analysis of simultaneous switchback experiments. We provide

a theoretical analysis of how the bias and variance of the Horvitz-Thompson estimator of the

GATE are affected by four factors: carryovers from interventions at earlier times, nonuniform event

density, correlations in event outcomes, and effects of interventions tested concurrently. Simulation

and empirical studies show how these factors trade off each other and provide insights into how

one can design efficient switchback experiments.

Perhaps the most general conclusion we can draw is that designing experiments in this con-

text involves considering a complex set of tradeoffs and critically depends on the assumptions

experimenters would make using prior knowledge. We illustrate this point with a case study on

a ride-sharing platform, showcasing the value of leveraging prior experiments to make adequate

assumptions when designing new experiments.

While we motivate this study by applications in the ride-sharing setting, the theory and practical

guidelines presented can find broader applications in other contexts. Indeed, various settings exist

where cross-sectional interventions are not possible or outcomes cannot be easily attributed to

treatment decisions. Estimating the effectiveness of traditional media advertising aligns well with

our problem setup, and a privacy-friendly approach to online advertising might employ temporal

variation in campaign spending linked to sales through timestamps only. Prior work has explored

time-varying interventions in financial or cryptocurrency markets (Krafft et al. 2018) or in self-

experimentation for personalized medicine (Karkar et al. 2016). An important goal of this work is

to expand the use of temporal experiments to settings where they are not currently used.
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presence of interference. Review of Economics and Statistics 100(5) 844–860.

Bajari, Patrick, Brian Burdick, Guido W Imbens, Lorenzo Masoero, James McQueen, Thomas S Richardson,

Ido M Rosen. 2023. Experimental design in marketplaces. Statistical Science 1(1) 1–19.

Basse, Guillaume, Avi Feller. 2018. Analyzing two-stage experiments in the presence of interference. Journal

of the American Statistical Association 113(521) 41–55.

Basse, Guillaume W, Yi Ding, Panos Toulis. 2023. Minimax designs for causal effects in temporal experiments

with treatment habituation. Biometrika 110(1) 155–168.

Bojinov, Iavor, David Simchi-Levi, Jinglong Zhao. 2023. Design and analysis of switchback experiments.

Management Science 69(7) 3759–3777.

Boyarsky, Ariel, Hongseok Namkoong, Jean Pouget-Abadie. 2023. Modeling interference using experiment

roll-out. arXiv preprint arXiv:2305.10728 .

Candogan, Ozan, Chen Chen, Rad Niazadeh. 2021. Near-optimal experimental design for networks: Inde-

pendent block randomization. Available at SSRN .

Chamandy, Nicholas. 2016. Experimentation in a ridesharing marketplace.

Chen, Hongyu, David Simchi-Levi. 2023. Switchback experiments in a reactive environment. Available at

SSRN 4436643 .

Chin, Alex. 2018. Central limit theorems via stein’s method for randomized experiments under interference.

arXiv preprint arXiv:1804.03105 .

Chin, Alex. 2019. Regression adjustments for estimating the global treatment effect in experiments with

interference. Journal of Causal Inference 7(2).

Cortez, Mayleen, Matthew Eichhorn, Christina Yu. 2022. Staggered rollout designs enable causal inference

under interference without network knowledge. Advances in Neural Information Processing Systems

35 7437–7449.

Crépon, Bruno, Esther Duflo, Marc Gurgand, Roland Rathelot, Philippe Zamora. 2013. Do labor market

policies have displacement effects? evidence from a clustered randomized experiment. The quarterly

journal of economics 128(2) 531–580.

Dasgupta, Tirthankar, Natesh S Pillai, Donald B Rubin. 2015. Causal inference from 2k factorial designs

by using potential outcomes. Journal of the Royal Statistical Society Series B: Statistical Methodology

77(4) 727–753.

Doudchenko, Nick, David Gilinson, Sean Taylor, Nils Wernerfelt. 2019. Designing experiments with synthetic

controls. Tech. rep., Working paper.



30

Doudchenko, Nick, Khashayar Khosravi, Jean Pouget-Abadie, Sebastien Lahaie, Miles Lubin, Vahab Mir-

rokni, Jann Spiess, et al. 2021. Synthetic design: An optimization approach to experimental design

with synthetic controls. Advances in Neural Information Processing Systems 34.

Eckles, Dean, Brian Karrer, Johan Ugander. 2017. Design and analysis of experiments in networks: Reducing

bias from interference. Journal of Causal Inference 5(1).

Farias, Vivek, Andrew Li, Tianyi Peng, Andrew Zheng. 2022. Markovian interference in experiments.

Advances in Neural Information Processing Systems 35 535–549.

Fisher, Ronald Aylmer. 1936. Design of experiments. British Medical Journal 1(3923) 554.

Forastiere, Laura, Edoardo M Airoldi, Fabrizia Mealli. 2021. Identification and estimation of treatment and

interference effects in observational studies on networks. Journal of the American Statistical Association

116(534) 901–918.

Han, Kevin, Shuangning Li, Jialiang Mao, Han Wu. 2022. Detecting interference in a/b testing with increasing

allocation. arXiv preprint arXiv:2211.03262 .

Holtz, David, Felipe Lobel, Ruben Lobel, Inessa Liskovich, Sinan Aral. 2023. Reducing interference bias in

online marketplace experiments using cluster randomization: Evidence from a pricing meta-experiment

on airbnb. Management Science .

Horvitz, Daniel G, Donovan J Thompson. 1952. A generalization of sampling without replacement from a

finite universe. Journal of the American statistical Association 47(260) 663–685.

Hu, Yuchen, Stefan Wager. 2022. Switchback experiments under geometric mixing. arXiv preprint

arXiv:2209.00197 .

Hudgens, Michael G, M Elizabeth Halloran. 2008. Toward causal inference with interference. Journal of the

American Statistical Association 103(482) 832–842.

Johari, Ramesh, Hannah Li, Inessa Liskovich, Gabriel Y Weintraub. 2022. Experimental design in two-sided

platforms: An analysis of bias. Management Science 68(10) 7069–7089.

Karkar, Ravi, Jasmine Zia, Roger Vilardaga, Sonali R Mishra, James Fogarty, Sean A Munson, Julie A

Kientz. 2016. A framework for self-experimentation in personalized health. Journal of the American

Medical Informatics Association 23(3) 440–448.

Krafft, Peter M, Nicolás Della Penna, Alex Sandy Pentland. 2018. An experimental study of cryptocurrency

market dynamics. Proceedings of the 2018 CHI conference on human factors in computing systems.

1–13.

Leung, Michael P. 2022. Causal inference under approximate neighborhood interference. Econometrica 90(1)

267–293.

Leung, Michael P. 2023. Network cluster-robust inference. Econometrica 91(2) 641–667.

Li, Hannah, Geng Zhao, Ramesh Johari, Gabriel Y Weintraub. 2021. Interference, bias, and variance in

two-sided marketplace experimentation: Guidance for platforms. arXiv preprint arXiv:2104.12222 .



31

Liu, Lan, Michael G Hudgens. 2014. Large sample randomization inference of causal effects in the presence

of interference. Journal of the american statistical association 109(505) 288–301.

Mirza, RD, S Punja, S Vohra, G Guyatt. 2017. The history and development of n-of-1 trials. Journal of the

Royal Society of Medicine 110(8) 330–340.

Ni, Tu, Iavor Bojinov, Jinglong Zhao. 2023. Design of panel experiments with spatial and temporal interfer-

ence. Available at SSRN 4466598 .

Qu, Zhaonan, Ruoxuan Xiong, Jizhou Liu, Guido Imbens. 2021. Efficient treatment effect estimation in

observational studies under heterogeneous partial interference. arXiv preprint arXiv:2107.12420 .

Sinclair, Betsy, Margaret McConnell, Donald P Green. 2012. Detecting spillover effects: Design and analysis

of multilevel experiments. American Journal of Political Science 56(4) 1055–1069.

Ugander, Johan, Brian Karrer, Lars Backstrom, Jon Kleinberg. 2013. Graph cluster randomization: Network

exposure to multiple universes. Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining . 329–337.

Wager, Stefan, Kuang Xu. 2021. Experimenting in equilibrium. Management Science 67(11) 6694–6715.

Wu, Yuhang, Zeyu Zheng, Guangyu Zhang, Zuohua Zhang, Chu Wang. 2022. Non-stationary a/b tests.

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining . 2079–

2089.

Xiong, Ruoxuan, Susan Athey, Mohsen Bayati, Guido W Imbens. 2023. Optimal experimental design for

staggered rollouts. Management Science .

Ye, Zikun, Dennis J Zhang, Heng Zhang, Renyu Zhang, Xin Chen, Zhiwei Xu. 2023a. Cold start to improve

market thickness on online advertising platforms: Data-driven algorithms and field experiments. Man-

agement Science 69(7) 3838–3860.

Ye, Zikun, Zhiqi Zhang, Dennis Zhang, Heng Zhang, Renyu Philip Zhang. 2023b. Deep learning based causal

inference for large-scale combinatorial experiments: Theory and empirical evidence. Available at SSRN

4375327 .

Yuan, Yuan, Kristen Altenburger, Farshad Kooti. 2021. Causal network motifs: identifying heterogeneous

spillover effects in a/b tests. Proceedings of the Web Conference 2021 . 3359–3370.



32

Appendix A: Supplementary Results

A.1. Supplementary Empirical Results
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Figure 13 Effect of simultaneous experiment on estimation error and effect of offset of switching points on estima-

tion error
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Figure 14 MSE of various designs in simulated experiments on control data using fitted impulse response function

of polynomial degree 1
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Figure 15 MSE of various designs in simulated experiments on control data using fitted impulse response function

of polynomial degree 2
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Figure 16 MSE of various designs in simulated experiments on control data using fitted impulse response function

of polynomial degree 3
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A.2. Additional examples

Below we show an example of the value of C(m) when the covariance decays linearly in the distance between

ti and tj .

Example A.1. Suppose the covariance Eε
[
ε(i)ε(j) | ti, tj

]
decays linearly in |ti−tj | for all tj ∈ [ti−h, ti+h],

and is zero outside this interval (i.e., Eε
[
ε(i)ε(j) | ti, tj

]
= σ2(h − |ti − tj |)/h). Suppose the event density

f(t) is uniform in t. If h < |Im|, then C(m) = σ2
(
|Im|2 − |Im|h+ 2h2/3

)
/T 2; otherwise, C(m) = σ2

(
|Im|2 −

|Im|3/(3h)
)
/T 2.

Example A.2. Suppose event density f(t) is uniform in t and the fixed-duration design is used. Further-

more, suppose the carryover effect δco
t is constant in t and carryover intensity is constant for t′ ∈ [t−h, t] for

any t and for h< T/M . Then I(m) = δco(1/M −h/(2T )).

A.3. Notations

Additional treatment effect estimands We additionally define the average instantaneous and carryover

effects, which are building blocks of GATE. The average instantaneous effect δinst is defined as

δinst =

∫
δinst
t f(t)dt ,

where δinst
t is the instantaneous treatment effect at time t that is defined as

δinst
t = Yt(et,0t, · · · ,0t)−Yt(0t,0t, · · · ,0t)

and et = (0, · · · ,0, 1︸︷︷︸
time t

,0, · · · ,0) is a one-hot-encoded vector with the entry of time t to be 1 and all the

remaining entries to be 0.

The average carryover effect δco
` (w), given treatment assignments w, is defined as

δco(w) =

∫
δco
t (wt)f(t)dt ,

where δco
t (wt) is the carryover effect at time t that is defined as

δco
t (wt) = Yt(wt,0t, · · · ,0t)−Yt(wt ◦ et,0t, · · · ,0t)

and “◦” denotes the entry-wise product. Let δco := δco(1) be the average carryover effect under global

treatment. Then we can decompose the GATE as

δgate = δinst + δco.

The expression of S(m,m′)
var in E[E2simul] in Theorem 4.2

S(m,m′)
var is defined as

S(m,m′)
var =4

∫
ti∈Im,tj∈Im′

(
1 (m=m′)EW [δsimul,2

ti,tj
(W ) | ti, tj ] + 1 (m 6=m′) Φ2†

ti,tj

)
f(ti)f(tj)dtidtj , (A.1)

where δsimul,2
ti,tj

(W ) is equal to

δsimul,2
ti,tj

(W ) =EW s
1 ,··· ,W

s
K

[(Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))×(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)
|W , ti, tj

]
,
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and for ti ∈ Im and tj ∈ Im′ with m 6=m′, Φ2†
ti,tj

is equal to

Φ2†
ti,tj

=
1

4

(
EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (0,0))

])
.

The term δsimul,2
ti,tj

(W ) is the expected product of simultaneous effects at time ti and at time tj , conditional

on W . The term Φ2†
ti,tj

then measures the discrepancy in δsimul,2
ti,tj

(W ) by varying the values of W (m) and

W (m′) and marginalizing over W (−m,−m′).

The expression of S(m,m′)
cov in E[(Einst + Ecarryover) · Esimul] in Theorem 4.2

S(m,m′)
cov is defined as

S(m,m′)
cov = (δgateµ(m′) + 2µ

(m′)
Y ctrl) ·S(m,m′)

1 +
(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3 . (A.2)

The term S
(m,m′)
1 is defined as

S
(m,m′)
1 = 2

∫
ti∈Im

(
1 (m=m′)EW

[
δsimul
ti

(W )
]

+ 1 (m 6=m′) Φ
simul,(−m′)
ti

)
f(ti)dti , (A.3)

where EW
[
δsimul
ti

(W )
]

is defined in Section 4.2 and, for ti ∈ Im and tj ∈ Im′ with m 6= m′, Φ
simul,(−m′)
ti

is

defined as

Φ
simul,(−m′)
ti

=
1

4

(
EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (0,0))

])
.

Recall that δsimul
ti

(W ) is the expected simultaneous effects at time ti, conditional on W . Then

EW
[
δsimul
ti

(W )
]

is the expected simultaneous effects at time ti, marginalized over W .

The term EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′))
]

is the simultaneous effects at time ti, marginalized

over W (−m,−m′), but conditional on W (m,m′), where

W (m,m′) = (W (m),W (m′)), W (−m,−m′) = W \W (m,m′) .

W (−m,−m′) is an M − 2 dimensional vector denoting the treatment status of the main intervention for all

intervals excluding the m-th and m′-th intervals.

Φ
simul,(−m′)
ti

is a measure of the discrepancy in simultaneous effects by varying the values of W (m) and

W (m′). Φ
simul,(−m′)
ti

is closely connected to Φsimul
ti

defined in Section 4.2 in that Φsimul
ti

measures the discrep-

ancy in simultaneous effects by varying the value of W (m), while both W (m) and W (m′) are varied in the

definition of Φ
simul,(−m′)
ti

.
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In addition, the term S
(m,m′)
2 is defined as

S
(m,m′)
2 =2

∫
tj∈Im′

(
1 (m=m′)EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)
]

+ 1 (m 6=m′) Φ
simul,(−m′)†
tj

)
f(tj)dtj ,

(A.4)

where for tj ∈ Im′ , Φ
simul,(−m′)†
tj

is equal to

Φ
simul,(−m′)†
tj

=
1

2

(
EW (−m,−m′)

[
δ†tj (W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δ†tj (W (−m,−m′),W (m,m′) = (1,0))

])
.

S
(m,m′)
2 is conceptually very similar to S

(m,m′)
1 , but is applied to the simultaneous effects when W (m) = 1.

Lastly, S
(m,m′)
3 is defined as

S
(m,m′)
3 =4

∫
ti∈Im,tj∈Im′

(
1 (m=m′)EW

[
δco
ti

(W )δsimul
tj

(W )
]

+ 1 (m 6=m′) Φco,simul
ti,tj

)
f(ti)f(tj)dtidtj

(A.5)

where for ti ∈ Im and tj ∈ Im′ , Φco,simul
ti,tj

is equal to

Φco,simul
ti,tj

=
1

4

(
EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (1,1)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (1,0)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (0,1)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (0,0)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (0,0))

])
S

(m,m′)
3 measures the expected value of the product of carryover effect at time ti and simultaneous effect

at time tj .

A.4. Additional Examples

Example A.3 (Misalignment of switching times for simultaneous interventions). This

example illustrates why the bias from simultaneous interventions can be reduced by misaligning the

switching times of different interventions. This happens when the confounding effects increase nonlinearly

with the times that interventions are jointly treated. Consider a simple example with two interventions,

time-invariant treatment effects for the first intervention, and zero treatment effects for the second

intervention unless jointly treated with the first intervention. Consider a simple design where intervals are

of the same length. Each interval of the first intervention is partitioned into two sub-intervals a and b of

the same length, and the treatment effects depend on the treatment assignments of sub-intervals a and b as

follows

Yt ((W1a,W1b), (W2a,W2b))−Yt ((0,0), (0,0)) =
δ1
2

(W1a +W1b)

+
δ12

4
(W1aW2a +W1bW2b)

2
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for t either in sub-interval a or b. Below we use two designs to illustrate why randomizing switching

times can be helpful. For the first design, the switching times of two interventions are aligned so that

((W1a,W1b), (W2a,W2b)) is equal to each of the following realizations with probability 1/4

((1,1), (1,1)) ((1,1), (0,0)) ((0,0), (1,1)) ((0,0), (0,0))

The bias of the HT estimator δ̂1 using the first design is

EW,ε,t[δ̂1− δ1] =

(
1

2
[(δ1 + δ12) + δ1]

)
− δ1 =

δ12

2

For the second design, the switching times of two interventions are not aligned, and the second intervention

switches at the end of sub-interval a. Therefore, ((W1a,W1b), (W2a,W2b)) is equal to each of the following

realizations with probability 1/8

((1,1), (1,1)) ((1,1), (0,1)) ((1,1), (0,1)) ((1,1), (0,0))

((0,0), (1,1)) ((0,0), (0,1)) ((0,0), (1,0)) ((0,0), (0,0))

The bias of the HT estimator δ̂1 using the second design is

EW,ε,t[δ̂1− δ1] =

(
1

4
[(δ1 + δ12) + (δ1 + δ12/4) + (δ1 + δ12/4) + δ1]

)
− δ1 =

3δ12

8

which is smaller than the bias by using the first design. The second design reduces the bias because the bias

incurred by (W2a,W2b) = (1,1) is much larger than that incurred by (W2a,W2b) = (0,1) or (1,0).
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Appendix B: Proof of Main Results

B.1. Proof of Proposition 4.1

Proof of Proposition 4.1 The bias Bias(Esimul) is zero following Example 4.5.

The expression of S(m,m′)
cov in E`[(Einst + Ecarryover) · Esimul] under Condition 1

Lemma B.1. Under the assumptions in Theorem 4.2 and Condition 1,

E(E2
simul) =

M∑
m=1

S(m,m)
var ,

where

S(m,m)
var =

(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)2

+

M∑
m′=1

K∑
`=1

(∫
ti∈Im∩Is`m′

δs.inst
`,ti

f(ti)dti +

∫
tj∈Im,t′∈Is`m′

δs.co
`,tj

ds.co
`,tj

(t′)f(t′)f(tj)dtjdt
′
)2

,

and S(m,m′)
var = 0 for m′ 6=m.

Proof of Lemma B.1 When treatment effects of simultaneous interventions are additive, the term

δsimul,2
ti,tj

(W ) in Equation (A.1) is

δsimul,2
ti,tj

(W ) =EW s
1 ,··· ,W

s
K

[(
K∑
`=1

[
W s
`,ti
δs.inst
`,ti

+ δs.co
`,ti
·
M∑
k=1

W
s(k)
`

∫
t′∈Is

`k

ds.co
`,ti

(t′)f(t′)dt′

])
(

K∑
`=1

[
W s
`,tj
δs.inst
`,tj

+ δs.co
`,tj
·
M∑
k=1

W
s(k)
`

∫
t′∈Is

`k

ds.co
`,tj

(t′)f(t′)dt′

])
|W , ti, tj

]

=
1

4

(
K∑
`=1

δs.gate
`,ti

)(
K∑
`=1

δs.gate
`,tj

)

+
1

4

K∑
`=1

δs.co
`,ti

δs.co
`,tj

M∑
k=1

(∫
t′∈Is

`k

ds.co
`,ti

(t′)f(t′)dt′

)(∫
t′∈Is

`k

ds.co
`,tj

(t′)f(t′)dt′

)

+
1

4

K∑
`=1

δs.inst
`,ti

δs.co
`,tj

∫
t′∈Is

`m(ti)

ds.co
`,tj

(t′)f(t′)dt′

(Is
`m(ti)

denotes the interval of simul. intervention ` to which ti belongs)

+
1

4

K∑
`=1

δs.inst
`,tj

δs.co
`,ti

∫
t′∈Is

`m(tj)

ds.co
`,ti

(t′)f(t′)dt′

+
1

4

K∑
`=1

1 (ti and tj in the same interval of simul. intervention `) δs.inst
`,ti

δs.inst
`,tj

.

We can see that δsimul,2
ti,tj

(W ) does not depend on W for any ti and tj . Then the term Φ2†
ti,tj

in Equation (A.1)

is 0, and we have

S(m,m′)
var = 0 for m 6=m′.

For m=m′, we have

S(m,m)
var =4

∫
ti,tj∈Im

EW [δsimul,2
ti,tj

(W ) | ti, tj ]f(ti)f(tj)dtidtj
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=

∫
ti,tj∈Im

(
K∑
`=1

δs.gate
`,ti

)(
K∑
`=1

δs.gate
`,tj

)
f(ti)f(tj)dtidtj

+

K∑
`=1

M∑
k=1

∫
ti,tj∈Im

δs.co
`,ti

δs.co
`,tj

(∫
t′∈Is

`k

ds.co
`,ti

(t′)f(t′)dt′

)(∫
t′∈Is

`k

ds.co
`,tj

(t′)f(t′)dt′

)
f(ti)f(tj)dtidtj

+ 2

K∑
`=1

M∑
m′=1

∫
ti∈Im∩Is`m′ ,tj∈Im

δs.inst
`,ti

δs.co
`,tj

(∫
t′∈Is

`m′

ds.co
`,tj

(t′)f(t′)dt′

)
f(ti)f(tj)dtidtj

+

K∑
`=1

M∑
m′=1

∫
ti,tj∈Im∩Is`m′

δs.inst
`,ti

δs.inst
`,tj

f(ti)f(tj)dtidtj .

We can further simplify S(m,m)
var to

S(m,m)
var =

(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)2

+

K∑
`=1

M∑
m′=1

(∫
ti∈Im,t′∈Is`m′

δs.co
`,ti

ds.co
`,ti

(t′)f(t′)f(ti)dtidt
′
)2

+ 2

K∑
`=1

M∑
m′=1

(∫
ti∈Im∩Is`m′

δs.inst
`,ti

f(ti)dti

)(∫
tj∈Im,t′∈Is`m′

δs.co
`,tj

ds.co
`,tj

(t′)f(t′)f(tj)dtjdt
′
)

+

K∑
`=1

M∑
m′=1

(∫
ti∈Im∩Is`m′

δs.inst
`,ti

f(ti)dti

)2

=

(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)2

+

K∑
`=1

M∑
m′=1

(∫
ti∈Im∩Is`m′

δs.inst
`,ti

f(ti)dti +

∫
tj∈Im,t′∈Is`m′

δs.co
`,tj

ds.co
`,tj

(t′)f(t′)f(tj)dtjdt
′
)2

.

In summary, E(E2
simul) is equal to

E(E2
simul) =

M∑
m=1

M∑
m′=1

S(m,m′)
var =

M∑
m=1

S(m)
var .

The expression of S(m,m′)
cov in E[(Einst + Ecarryover) · Esimul] under Condition 1

Lemma B.2. Under the assumptions in Theorem 4.2 and Condition 1,

E[(Einst + Ecarryover) · Esimul] =

M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)
.

Proof of Lemma B.2 As shown in Theorem 4.2,

E`[(Einst + Ecarryover) · Esimul] =

M∑
m=1

M∑
m′=1[

(δgateµ(m′) + 2µ
(m)

Y ctrl) ·S(m,m′)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3

]
In Lemmas B.3, B.4, and B.5 below, we show the expression of S

(m,m′)
1 , S

(m,m′)
2 , and S

(m,m′)
3 under

Condition 1.

Lemma B.3. Under the assumptions in Theorem 4.2 and Condition 1,

S
(m,m)
1 =

K∑
`=1

(∫
ti∈Im

δs.gate
`,ti

f(ti)dti

)
.
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Proof of Lemma B.3 If the effects of main and simultaneous interventions are additive, the term

δsimul
ti

(W ) in Equation (A.3) is equal to

δsimul
ti

(W ) = EW s
1 ,··· ,W

s
K

[Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0) |W , ti]

=EW s
1 ,··· ,W

s
K

[
K∑
`=1

[
W s
`,ti
δs.inst
`,ti

+ δs.co
`,ti
·
M∑
k=1

W
s(k)
`

∫
t′∈Is

`k

ds.co
`,ti

(t′)f(t′)dt′

]
|W , ti, tj

]

=
1

2

K∑
`=1

[
δs.inst
`,ti

+ δs.co
`,ti
·
M∑
k=1

∫
t′∈Is

`k

ds.co
`,ti

(t′)f(t′)dt′

]
=

1

2

K∑
`=1

δs.gate
`,ti

δsimul
ti

(W ) does not depend on the value of W . Then for m 6=m′, the term Φ
simul,(−m′)
ti

in Equation (A.3) is

0, and

S
(m,m′)
1 = 0 m 6=m′ .

For m=m′, we have

S
(m,m)
1 =2

∫
ti∈Im

(
1

2

K∑
`=1

δs.gate
`,ti

)
f(ti)dti =

K∑
`=1

(∫
ti∈Im

δs.gate
`,ti

f(ti)dti

)
.

�

Lemma B.4. Under the assumptions in Theorem 4.2 and Condition 1,

S
(m,m)
2 =

K∑
`=1

(∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)
.

Proof of Lemma B.4 If the effects of main and simultaneous interventions are additive, the term

EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)
]

in Equation (A.4) is equal to

EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)
]

=
1

2

K∑
`=1

δs.gate
`,ti

and the term Φ
simul,(−m′)†
tj

in Equation (A.4) is 0 for m 6=m′, and therefore

S
(m,m′)
2 = 0 m 6=m′

and

S
(m,m)
2 =2

∫
tj∈Im

(
1

2

K∑
`=1

δs.gate
`,tj

)
f(tj)dtj =

K∑
`=1

(∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)
,

which is equal to S
(m,m)
1 . �

Lemma B.5. Under the assumptions in Theorem 4.2 and Condition 1,

S
(m,m)
3 =

(∫
ti∈Im

δco
ti
f(ti)dti

)( K∑
`=1

∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)
.

Proof of Lemma B.5 If the effects of main and simultaneous interventions are additive, from Lemma B.3,

we have

δsimul
tj

(W ) =
1

2

K∑
`=1

δs.gate
`,tj

,
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which does not depend on W . We then have

EW
[
δco
ti

(W )δsimul
tj

(W )
]

=EW
[
δco
ti

(W )
]
· 1

2

K∑
`=1

δs.gate
`,tj

=
1

4
δco
ti

K∑
`=1

δs.gate
`,tj

following that

EW
[
δco
ti

(W )
]

=EW

[
δco
ti
·
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

]
=

1

2
δco
ti
.

Therefore, if ti ∈ Im and tj ∈ Im′ with m 6=m′, we have Φco,simul
ti,tj

= 0, and then

S
(m,m′)
3 = 0 m 6=m′ .

When m=m′, we have

S
(m,m)
3 =

∫
ti,tj∈Im

δco
ti

(
K∑
`=1

δs.gate
`,tj

)
f(ti)f(tj)dtidtj

=

(∫
ti∈Im

δco
ti
f(ti)dti

)( K∑
`=1

∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)

=Ξ̃co,(m)

(
K∑
`=1

∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)
.

�

From Lemmas B.3, B.4, and B.5, we have for m 6=m′,

S(m,m′)
cov = (δgateµ(m′) + 2µ

(m)

Y ctrl) ·S(m,m′)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3 = 0

For m=m′, we have

S(m,m)
cov =(δgateµ(m) + 2µ

(m)

Y ctrl) ·S(m,m)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m)
2 +S

(m,m)
3

=
(
δgateµ(m) + 2µ

(m)

Y ctrl

) K∑
`=1

(∫
ti∈Im

δs.gate
`,ti

f(ti)dti

)

+
(
Ξinst,(m)− δcoµ(m)

) K∑
`=1

(∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)

+

(∫
ti∈Im

δco
ti
f(ti)dti

)( K∑
`=1

∫
tj∈Im

δs.gate
`,tj

f(tj)dtj

)

=
(

Ξ(m) + 2µ
(m)

Y ctrl

)(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)
.

following that Ξ(m) = Ξinst,(m) + Ξco,(m) + δgateµ(m) and Ξco,(m) = Ξ̃co,(m)− δcoµ(m).

Then we have

E`[(Einst + Ecarryover) · Esimul] =

M∑
m=1

M∑
m′=1

S(m,m′)
cov

=

M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)(∫
ti∈Im

[ K∑
`=1

δs.gate
`,ti

]
f(ti)dti

)
.

�
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B.2. Proof of Theorem 4.1

The estimation error of δ̂gate can be decomposed as

δ̂gate− δgate = δgate

(
1

n

n∑
i=1

Wti

π
− 1

)
︸ ︷︷ ︸

instantaneous effects
denoted by Einst

+
1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Wtiδ

gate
)

︸ ︷︷ ︸
carryover effects

denoted by Ecarryover

+
1

n

n∑
i=1

αti (Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))︸ ︷︷ ︸
effects from other interventions, denoted by Esimul

+
1

n

n∑
i=1

αtiε
(i)

︸ ︷︷ ︸
measurement errors
denoted by Emeas

. (B.6)

In the following three lemmas, we show the expected value of Emeas, Einst, Ecarryover, and Esimul in Equation

(B.6). If the expected value of a term is nonzero, then this term results in an estimation bias of δ̂gate.

Lemma B.6 (Mean of measurement errors and constant term). Under the assumptions in Theo-

rem 4.1, the mean of measurement errors is

EW,ε,t [Emeas] = EW,ε,t

[
1

n

n∑
i=1

αtiε
(i)

]
= 0 .

Proof of Lemma B.6 The mean of the measurement errors is

EW,ε,t

[
1

n

n∑
i=1

αtiε
(i)

]
=

1

n

n∑
i=1

EW,ti
[
αtiEε

[
ε(i) |W ,W s

1 , · · · ,W s
K , ti

]]
= 0

following that ε(i) has mean zero and is independent of W ,W s
1 , · · · ,W s

K . �

Lemma B.7 (Instantaneous and Carryover effects). Under the assumptions in Theorem 4.1, the

carryover bias equals to

EW,ε,t [Einst] = EW,ε,t

[
δgate

(
1

n

n∑
i=1

Wti

π
− 1

)]
= 0

EW,ε,t [Ecarryover] =EW,ε,t

[
1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Wtiδ

gate
)]

=

M∑
m=1

I(m)− δco .

Proof of Lemma B.7 The expected value of Einst is equal to

EW,ε,t [Einst] = EW,ε,t

[
1

n

n∑
i=1

Wti

π
− 1

]
=

1

n

n∑
i=1

EW,ε,t[Wti ]

π
− 1 = 0 .

As events are sampled i.i.d. from distribution f(t), the expected value of Ecarryover is equal to

EW,ε,t [Ecarryover] = EW,ε,t

[
1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Wtiδ

gate
)]

=EW,ε,t

[
1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Yti(0,0, · · · ,0)−Wtiδ

gate
)]

+EW,ε,t

[
1

n

n∑
i=1

αtiYti(0,0, · · · ,0)

]
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=EW,t
[
αti(δ

inst
ti
− δinst)Wti +αti(δ

co
ti

(W )− δcoWti)
]

+EW,t [αtiYti(0,0, · · · ,0)]
(the expected over ε is dropped as marketplace outcomes do not depend on ε(i))

=Et
[
(δinst
ti
− δinst) ·EW

[
Wti

π
| ti
]

︸ ︷︷ ︸
=1

]
+EW,t

[
αti(δ

co
ti

(W )− δcoWti)
]

(multiple αti by Wti)

+EW,t
[
EW [αti | ti]︸ ︷︷ ︸

=0

·Yti(0,0, · · · ,0)
]

=EW,t
[
αti(δ

co
ti

(W )− δcoWti)
]

(the first term is zero because Et[δinst
ti

] = δinst)

By Assumption 4.2, the last line can be further simplified to

EW,t
[
αti(δ

co
ti

(W )− δcoWti)
]

=EW,t

[
Wti −π
π(1−π)

M∑
k=1

δco
ti
W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

]
− δco

=EW,ε,t

[
Wti −π
π(1−π)

δco
ti

M∑
k=1

W (k)
1(ti ∈ Ik)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

]
− δco

(the treatment assignments of any two intervals are independent and EW,ε,t
[
Wti
−π

π(1−π)

]
= 0)

=

M∑
m=1

∫
ti∈Im

δco
ti

[∫
t′∈Im

dco
ti

(t′)f(t′)dt′
]
f(ti)dti− δco (EW,ε,t

[
(Wti

−π)Wti

π(1−π)

]
= 1)

=

M∑
m=1

I(m)− δco (by definition of I(m))

We then finish the proof of Lemma B.7. �

Lemma B.8 (Effects from simultaneous interventions). Under the assumptions in Theorem 4.1, the

bias from simultaneous interventions is

EW,ε,t [Esimul] =EW,ε,t

[
1

n

n∑
i=1

αti (Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))

]

=

M∑
m=1

∫
t∈Im

Φsimul
t f(t)dt .

Proof of Lemma B.8 As events are sampled i.i.d. from f(t), we have

EW,ε,t

[
1

n

n∑
i=1

αti (Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))

]
=EW,t [αti (Yti(W ,W s

1 , · · · ,W s
K)−Yti(W ,0, · · · ,0))]

(marketplace potential outcomes do not depend on ε(i))

=EW,t
[
αtiEW s

1 ,··· ,W
s
K

[Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0) |W , ti]
]

(by the law of total expectation)

=EW,t
[
αtiδ

simul
ti

(W )
]

(by definition of δsimul
ti

(W ))

=

M∑
m=1

∫
t∈Im

Φsimul
t f(t)dt

(first take the expected value over W (−m) and then take the expected value over W (m))

where Φsimul
t is defined as

Φsimul
t =EW (−m)

[
δ†t (W

(−m),W (m) = 1)

]
−EW (−m)

[
δ†t (W

(−m),W (m) = 0)

]
.

We then finish the proof of Lemma B.8. �
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Proof of Theorem 4.1 Based on the decomposition of the estimation error of δ̂gate in Equation (B.6), the

bias of δ̂gate equals to

EW,ε,t
[
δ̂gate− δgate

]
=EW,ε,t [Ecarryover] +EW,ε,t [Esimul]

= δco

[
M∑
m=1

I(m)− 1

]
︸ ︷︷ ︸

Bias`(carryover)

+

M∑
m=1

∫
t∈Im

Φsimul
ti

f(t)dt︸ ︷︷ ︸
Bias(Esimul)

following Lemmas B.6, B.7, and B.8. �

B.3. Proof of Theorem 4.2

We can decompose the mean-squared error of δ̂gate as follows.

EW,ε,t
[(
δ̂gate− δgate

)2
]

=EW,ε,t
[
(Emeas + Einst + Ecarryover + Esimul)

2
]

=EW,ε,t
[
(Emeas)

2
]

+ 2EW,ε,t [Emeas (Einst + Ecarryover + Esimul)]

+EW,ε,t
[
(Einst)

2
]

+EW,ε,t
[
(Ecarryover)

2
]

+ 2EW,ε,t [EcarryoverEinst]

+EW,ε,t
[
(Esimul)

2
]

+ 2EW,ε,t [EsimulEinst] + 2EW,ε,t [EsimulEcarryover]

Below we show the value of each term in the decomposition separately.

We first introduce a few more notations to measure the heterogeneity in treatment effects, which will be

used in showing the value of the three terms that involve Ecarryover. Let

Ξinst,(m) =

∫
ti∈Im

(δinst
ti
− δinst)f(ti)dti

measure the discrepancy between the heterogeneous instantaneous effect δinst
ti

and average instantaneous

effect δinst for times ti in the interval Im. Analogously, let

Ξco,(m) =

∫
ti∈Im

(δco
ti
− δco)f(ti)dti

measure the discrepancy between the heterogeneous carryover effect δinst
ti

and average carryover effect δinst

for times ti in the interval Im. Note that
∑M

m=1 Ξinst,(m) = 0 and
∑M

m=1 Ξco,(m) = 0 by the definition of δinst

and δco. Furthermore,

Ξ̃co,(m) =

∫
ti∈Im

δco
ti
f(ti)dti = Ξco,(m) + δcoµ(m) .

Lemma B.9 (Second moment of measurement errors and constant term). Under the assump-

tions in Theorem 4.2, the second moment of the measurement error is

EW,ε,t
[
(Emeas)

2
]

=EW,ε,t

( 1

n

n∑
i=1

αtiε
(i)

)2
=

4

n

M∑
m=1

(
V (m) + (n− 1)C(m)

)
.

Proof of Lemma B.9 The second moment of Emeas equals

EW,ε,t
[
(Emeas)

2
]

=
1

n2

∑
i,j

EW,ε,t
[
αtiαtjε

(i)ε(j)
]

=
1

n
EW,t

[
α2
ti
Eε
[(
ε(i)
)2 |W ,W s

1 , · · · ,W s
K , ti

]]
+
n− 1

n
EW,t

[
Eε
[
ε(i)ε(j) |W ,W s

1 , · · · ,W s
K , ti, tj

]]
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=
1

nπ(1−π)

M∑
m=1

∫
ti∈Im

Eε
[
(ε(i))2 | ti

]
f(ti)dti︸ ︷︷ ︸

V (m)

+
n− 1

nπ(1−π)

M∑
m=1

∫
ti,tj∈Im

Eε
[
ε(i)ε(j) | ti, tj

]
f(ti)f(tj)dtidtj︸ ︷︷ ︸

C(m)

where we use the following property to show the expression of the second term in the last equation

EW
[
αtiαtj | ti, tj

]
=EW

[
(Wti −π)(Wtj −π)

π2(1−π)2
| ti, tj

]
=

{
1

π(1−π)
ti and tj in the same interval

0 otherwise.

Setting π as 1/2, we have

EW,ε,t
[
(Emeas)

2
]

=
4

n

M∑
m=1

(
V (m) + (n− 1)C(m)

)
.

We then finish the proof of Lemma B.9. �

Lemma B.10 (Expected product of Emeas and Einst + Ecarryover + Esimul). Under the assumptions in

Theorem 4.2, the expected product of Emeas and Einst + Ecarryover + Esimul is equal to

EW,ε,t [Emeas (Einst + Ecarryover + Esimul)] = 0 .

Proof of Lemma B.10 First, for the expected value of the product of Emeas and Einst, we have

EW,ε,t [EmeasEinst] =EW,ε,t

[(
1

n

n∑
i=1

αtiε
(i)

)(
δgate

[
1

n

n∑
i=1

Wti

π
− 1

])]

=EW,ε,t

[(
1

n

n∑
i=1

αtiEε
[
ε(i) |W ,W s

1 , · · · ,W s
K , ti

])(
δgate

[
1

n

n∑
i=1

Wti

π
− 1

])]
=0 .

(Eε
[
ε(i) |W ,W s

1 , · · · ,W s
K , ti

]
= 0 for all i)

Second, the expected value of the product of Emeas and Ecarryover is equal to

EW,ε,t [EmeasEcarryover]

=EW,ε,t

[(
1

n

n∑
i=1

αtiEε
[
ε(i) |W ,W s

1 , · · · ,W s
K , ti

])
×(

1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Wtiδ

gate
))]

=0 .

Third, the expected value of the product of Emeas and Esimul is equal to

EW,ε,t [EmeasEsimul]

=EW,ε,t

[(
1

n

n∑
i=1

αtiEε
[
ε(i) |W ,W s

1 , · · · ,W s
K , ti

])
·(

1

n

n∑
i=1

αti (Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))

)]
= 0 .
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Then we have

EW,ε,t [Emeas (Einst + Ecarryover + Esimul)]

= EW,ε,t [EmeasEinst] +EW,ε,t [EmeasEcarryover] +EW,ε,t [EmeasEsimul] = 0 .

We then finish the proof of Lemma B.10. �

Lemma B.11 (Second moment of instantaneous effects). Under the assumptions in Theorem 4.1,

the second moment of Einst is equal to

EW,ε,t
[
(Einst)

2
]

=(δgate)2

M∑
m=1

[
µ(m)

]2
.

Proof of Lemma B.11 The second moment of Einst equals

EW,ε,t
[
(Einst)

2
]

=
(δgate)2

n2

∑
i,j

EW,t
[(

Wti

π
− 1

)(
Wtj

π
− 1

)]
=(δgate)2EW,t

[(
Wti

π
− 1

)(
Wtj

π
− 1

)]
=(δgate)2

(
1

π
− 1

) M∑
m=1

∫
ti,tj∈Im

f(ti)f(tj)dtidtj︸ ︷︷ ︸
[µ(m)]

2

,

where we use the following property to show the last equation

EW
[(

Wti

π
− 1

)(
Wtj

π
− 1

)
| ti, tj

]
=

{
π−1
π

ti and tj in the same interval

0 otherwise.

Setting π= 1/2, we have

EW,ε,t
[
(Einst)

2
]

=(δgate)2

M∑
m=1

[
µ(m)

]2
.

We then finish the proof of Lemma B.11. �

Lemma B.12 (Second moment of carryover effects). Under the assumptions in Theorem 4.2, the

second moment of Ecarryover equals to

EW,ε,t
[
(Ecarryover)

2
]

=

M∑
m=1

(
Ξinst,(m) + Ξco,(m) + 2µ

(m)

Y ctrl

)2

+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
.

Proof of Lemma B.12 As events are sampled i.i.d. from distribution f(t), we have

EW,ε,t
[
(Ecarryover)

2
]

=EW,t

( 1

n

n∑
i=1

[
αti(δ

inst
ti
− δinst)Wti +αti(δ

co
ti

(W )− δcoWti)
]

+
1

n

n∑
i=1

αtiYti(0, · · · ,0)

)2


(carryover effects do not depend on ε)

=EW,t

( 1

n

n∑
i=1

[
αti(δ

inst
ti
− δinst)Wti +αti(δ

co
ti

(W )− δcoWti)
])2


︸ ︷︷ ︸

Atreat
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+ 2EW,t

[(
1

n

n∑
i=1

[
αti(δ

inst
ti
− δinst)Wti +αti(δ

co
ti

(W )− δcoWti)
])( 1

n

n∑
i=1

αtiYti(0, · · · ,0)

)]
︸ ︷︷ ︸

Across

+EW,t

( 1

n

n∑
i=1

αtiYti(0, · · · ,0)

)2


︸ ︷︷ ︸
Acontrol

Let us first consider the simplest term Acontrol. For this term, we have

Acontrol =
1

n2

∑
i,j

EW,t
[
αtiYti(0, · · · ,0) ·αtjYtj (0, · · · ,0)

]
=EW,t

[
αtiYti(0, · · · ,0) ·αtjYtj (0, · · · ,0)

]
=

M∑
m=1

∫
ti,tj∈Im

EW
[
αtiαtj | ti, tj

]
Yti(0, · · · ,0)Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

+

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

EW
[
αtiαtj | ti, tj

]
Yti(0, · · · ,0)Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
1

π(1−π)

M∑
m=1

∫
ti,tj∈Im

Yti(0, · · · ,0)Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
1

π(1−π)

M∑
m=1

(∫
ti∈Im

Yti(0, · · · ,0)f(ti)dti

)2

=
1

π(1−π)

M∑
m=1

[
µ

(m)

Y ctrl

]2
following the definition that µ

(m)

Y ctrl =
∫
ti∈Im

Yti(0, · · · ,0)f(ti)dti.

Next we consider the cross term Across. For this term, we have

Across =
1

n2

∑
i,j

EW,t
[(
αti(δ

inst
ti
− δinst)Wti +αti(δ

co
ti

(W )− δcoWti)
)
αtjYtj (0, · · · ,0)

]
=EW,t

[
αti(δ

inst
ti
− δinst)Wti ·αtjYtj (0, · · · ,0)

]︸ ︷︷ ︸
B1,ij

+EW,t
[
αti(δ

co
ti

(W )− δcoWti) ·αtjYtj (0, · · · ,0)
]︸ ︷︷ ︸

B2,ij

For B1,ij , we have

B1,ij =EW,t
[
Wti

π

Wtj −π
π(1−π)

(δinst
ti
− δinst) ·Ytj (0, · · · ,0)

]
=

M∑
m=1

∫
ti,tj∈Im

EW
[
Wti

π

Wtj −π
π(1−π)

| ti, tj
]

(δinst
ti
− δinst) ·Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

+

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

EW
[
Wti

π

Wtj −π
π(1−π)

| ti, tj
]

︸ ︷︷ ︸
=0

×

(δinst
ti
− δinst) ·Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
1

π

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst) ·Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
1

π

M∑
m=1

Ξinst,(m)µ
(m)

Y ctrl .
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For B2,ij , we have

B2,ij =EW,t
[
αtiδ

co
ti

(W ) ·αtjYtj (0, · · · ,0)
]︸ ︷︷ ︸

C1,ij

− δcoEW,t
[
Wti

π
αtjYtj (0, · · · ,0)

]
︸ ︷︷ ︸

C2,ij

.

C1,ij equals to

C1,ij =

M∑
m,m′=1

∫
ti∈Im,tj∈Im′

EW

[
Wti −π
π(1−π)

Wtj −π
π(1−π)

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

)
| ti, tj

]
× δco

ti
Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
1

π

M∑
m=1

∫
ti,tj∈Im

[∫
t′∈Im

dco
ti

(t′)f(t′)dt′
]
δco
ti
Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

+
1

1−π
M∑
m=1

∫
ti,tj∈Im

[ ∑
k:k 6=m

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

]
δco
ti
Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=2

M∑
m=1

∫
ti,tj∈Im

δco
ti
Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=2

M∑
m=1

Ξ̃co,(m)µ
(m)

Y ctrl .

C2,ij equals to

C2,ij =δcoEW,t
[
Wti

π
αtjYtj (0, · · · ,0)

]
=δco

M∑
m=1

∫
ti,tj∈Im

EW
[
Wti

π
αtj | ti, tj

]
︸ ︷︷ ︸

=1/π

Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

+ δco

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

EW
[
Wti

π
αtj | ti, tj

]
︸ ︷︷ ︸

=0

Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=
δco

π

M∑
m=1

∫
ti,tj∈Im

Ytj (0, · · · ,0)f(ti)f(tj)dtidtj

=2δco

M∑
m=1

µ(m)µ
(m)

Y ctrl .

Therefore,

B2,ij =2

M∑
m=1

(
Ξ̃co,(m)− δcoµ(m)

)
µ

(m)

Y ctrl = 2

M∑
m=1

Ξco,(m)µ
(m)

Y ctrl .

Across is then equal to

Across =2

M∑
m=1

Ξinst,(m)µ
(m)

Y ctrl + 2

M∑
m=1

Ξco,(m)µ
(m)

Y ctrl = 2

M∑
m=1

Ξ(m)µ
(m)

Y ctrl .

Last, we consider the term about treatment effect, Atreat. For this term, we have

Atreat =
1

n2

∑
i,j

EW,t
[
αti(δ

inst
ti
− δinst)Wti ·αtj (δinst

tj
− δinst)Wtj

]
︸ ︷︷ ︸

:=A1,ij
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+
2

n2

∑
i,j

EW,t
[
αti(δ

inst
ti
− δinst)Wti ·αtj (δco

tj
(W )− δcoWtj )

]
︸ ︷︷ ︸

:=A2,ij

+
1

n2

∑
i,j

EW,t
[
αti(δ

co
ti

(W )− δcoWti)αtj (δco
tj

(W )− δcoWtj )
]

︸ ︷︷ ︸
:=A3,ij

.

Below we compute each of A1,ij , A2,ij , and A3,ij . We first compute A1,ij .

A1,ij =EW,t
[
Wti

π

Wtj

π
(δinst
ti
− δinst)(δinst

tj
− δinst)

]
=

∫
ti,tj∈[0,T ]

(δinst
ti
− δinst)(δinst

tj
− δinst)f(ti)f(tj)dtidtj

+

(
1

π
− 1

) M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst)(δinst

tj
− δinst)f(ti)f(tj)dtidtj

=

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst)(δinst

tj
− δinst)f(ti)f(tj)dtidtj =

M∑
m=1

[
Ξinst,(m)

]2
.

(the first term is zero following that Et[δinst
tj

] = δinst and π= 1/2)

We then compute A2,ij .

A2,ij =EW,t
[
Wti

π

Wtj −π
π(1−π)

(δinst
ti
− δinst)δco

tj
(W )

]
︸ ︷︷ ︸

:=B1,ij

− δcoEW,t
[
Wti

π

Wtj

π
(δinst
tj
− δinst)

]
︸ ︷︷ ︸

:=B2,ij

.

For B1,ij , we have

B1,ij =

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst)δco

tj
×

EW

[
Wti

π

Wtj −π
π(1−π)

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
tj

(t′)f(t′)dt′

)
| ti, tj

]
f(ti)f(tj)dtidtj

+

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

(δinst
ti
− δinst)δco

tj
×

EW

[
Wti

π

Wtj −π
π(1−π)

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
tj

(t′)f(t′)dt′

)
| ti, tj

]
f(ti)f(tj)dtidtj

=

M∑
m=1

(∫
ti∈Im

(δinst
ti
− δinst)f(ti)dti

)
︸ ︷︷ ︸

Ξinst,(m)

(∫
tj∈Im

δco
tj

(
M∑
k=1

∫
t′∈Ik

dco
tj

(t′)f(t′)dt′

)
f(tj)dtj

)
︸ ︷︷ ︸

Ξ̃co,(m)

+

(
1

π
− 1

) M∑
m=1

(∫
ti∈Im

(δinst
ti
− δinst)f(ti)dti

)(∫
tj∈Im

δco
tj

(∫
t′∈Im

dco
tj

(t′)f(t′)dt′
)
f(tj)dtj

)
︸ ︷︷ ︸

I(m)

+

M∑
m=1

∑
m′:m′ 6=m

(∫
ti∈Im

(δinst
ti
− δinst)f(ti)dti

)(∫
tj∈Im′

δco
tj

(∫
t′∈Im′

dco
tj

(t′)f(t′)dt′

)
f(tj)dtj

)
︸ ︷︷ ︸

I(m
′)

=

M∑
m=1

Ξinst,(m)Ξ̃co,(m) + δco

(
M∑

m′=1

I(m′)

)(
M∑
m=1

∫
ti∈Im

(δinst
ti
− δinst)f(ti)dti

)
︸ ︷︷ ︸

=0

(π= 1/2)

=

M∑
m=1

Ξinst,(m)Ξ̃co,(m) .



50

For B2,ij , we have

B2,ij =δco

M∑
m=1

∫
ti,tj∈Im

(δinst
tj
− δinst)EW

[
Wti

π

Wtj

π
| ti, tj

]
f(ti)f(tj)dtidtj

+ δco

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

(δinst
tj
− δinst)EW

[
Wti

π

Wtj

π
| ti, tj

]
f(ti)f(tj)dtidtj

=
δco

π

M∑
m=1

µ(m)

∫
tj∈Im

(δinst
tj
− δinst)f(tj)dtj + δco

M∑
m=1

∑
m′:m′ 6=m

µ(m)

∫
tj∈Im′

(δinst
tj
− δinst)f(tj)dtj

=δco

M∑
m=1

µ(m)

∫
tj∈Im

(δinst
tj
− δinst)f(tj)dtj = δco

M∑
m=1

µ(m)Ξinst,(m) ,

by the definition of δinst
`,t and π= 1/2. Then A2,ij is equal to

A2,ij = B1,ij −B2,ij =

M∑
m=1

Ξinst,(m)
(

Ξ̃co,(m)− δcoµ(m)
)

=

M∑
m=1

Ξinst,(m)Ξco,(m) .

Finally we compute A3,ij .

A3,ij =EW,t
[
Wti −π
π(1−π)

Wtj −π
π(1−π)

δco
ti

(W )δco
tj

(W )

]
︸ ︷︷ ︸

:=B1,ij

− δcoEW,t
[
Wti −π
π(1−π)

Wtj

π
δco
ti

(W )

]
︸ ︷︷ ︸

:=B2,ij

− δcoEW,t
[
Wti

π

Wtj −π
π(1−π)

δco
tj

(W )

]
︸ ︷︷ ︸

:=B3,ij

+ (δco)2EW,t
[
Wti

π

Wtj

π

]
︸ ︷︷ ︸

:=B4,ij

.

For B1,ij , we have

B1,ij =

M∑
m,m′=1

∫
ti∈Im,tj∈Im′

δco
ti
δco
tj
EW

[
Wti −π
π(1−π)

Wtj −π
π(1−π)

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

)
(

M∑
k′=1

W (k′)

∫
t′∈Ik′

dco
tj

(t′)f(t′)dt′

)
| ti, tj

]
f(ti)f(tj)dtidtj .

When m=m′, the term EW [· | ti, tj ] in the last equation equals to

EW

[
(Wti −π)2

π2(1−π)2

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

)(
M∑
k′=1

W (k′)

∫
t′∈Ik′

dco
tj

(t′)f(t′)dt′

)
| ti, tj

]

=
1

π

(∫
t′∈Im

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Im
dco
tj

(t′)f(t′)dt′
)

(k= k′ =m)

+
1

1−π
∑
k:k 6=m

(∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Ik

dco
tj

(t′)f(t′)dt′
)

(k= k′ and both do not equal to m)

+
∑

k′:k′ 6=m

(∫
t′∈Im

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Ik′
dco
tj

(t′)f(t′)dt′

)
(k=m, but k′ 6=m)

+
∑
k:k 6=m

(∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Im
dco
tj

(t′)f(t′)dt′
)

(k 6=m, but k′ =m)

+
π

1−π
∑

k,k′:k 6=m,k′ 6=m,k 6=k′

(∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Ik′
dco
tj

(t′)f(t′)dt′

)
(k 6=m, k′ 6=m, k 6= k′)

=1 +

M∑
k=1

(∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Ik

dco
tj

(t′)f(t′)dt′
)

(π= 1/2)
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where we use
∑K

k=1

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′ = 1 for any ti.

When m 6=m′, the term EW [· | ti, tj ] is equal to

EW [· | ti, tj ] =

(∫
t′∈Im

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Im′
dco
tj

(t′)f(t′)dt′

)

+

(∫
t′∈Im′

dco
ti

(t′)f(t′)dt′

)(∫
t′∈Im

dco
tj

(t′)f(t′)dt′
)
.

Then B1,ij is equal to

B1,ij =

M∑
m=1

∫
ti,tj∈Im

δco
ti
δco
tj

[
1 +

M∑
k=1

(∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Ik

dco
tj

(t′)f(t′)dt′
)]

f(ti)f(tj)dtidtj

+
∑

m,m′:m 6=m′

∫
ti∈Im,tj∈Im′

δco
ti
δco
tj

(∫
t′∈Im

dco
ti

(t′)f(t′)dt′
)(∫

t′∈Im′
dco
tj

(t′)f(t′)dt′

)

+ δco
ti
δco
tj

(∫
t′∈Im′

dco
ti

(t′)f(t′)dt′

)(∫
t′∈Im

dco
tj

(t′)f(t′)dt′
)
f(ti)f(tj)dtidtj

=

M∑
m=1

[
Ξ̃co,(m)

]2
+

M∑
m=1

M∑
m′=1

[
I(m,m′)

]2
+

M∑
m=1

∑
m′:m′ 6=m

(
I(m)I(m′) + I(m,m′)I(m′,m)

)
,

where

I(m,m′) =

∫
ti∈Im,t′∈Im′

δco
ti
dco
ti

(t′)f(ti)f(t′)dtidt
′ .

For B2,ij , we have

B2,ij = δcoEW,t
[
Wti −π
π(1−π)

Wtj

π
δco
ti

(W )

]
=δcoEW,t

[
Wti −π
π(1−π)

Wtj

π
δco
ti

M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

]

=δco

M∑
m=1

∫
ti,tj∈Im

δco
ti
EW

[
Wti

π2

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

)
| ti
]
f(ti)f(tj)dtidtj

(ti and tj in the same interval)

+ δco

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

δco
ti
·EW

[
Wti −π
π(1−π)

Wtj

π

(
M∑
k=1

W (k)

∫
t′∈Ik

dco
ti

(t′)f(t′)dt′

)
| ti
]
f(ti)f(tj)dtidtj

(ti and tj in different intervals)

=δco

M∑
m=1

µ(m)

∫
ti∈Im

δco
ti

(
1 +

∫
t′∈Im

dco
ti

(t′)f(t′)dt′
)
f(ti)dti

+ δco

M∑
m=1

∑
m′:m′ 6=m

µ(m′)

∫
ti∈Im

δco
ti

[∫
t′∈Im

dco
ti

(t′)f(t′)dt′
]
f(ti)dti

=δco

M∑
m=1

µ(m)
(

Ξ̃co,(m) + I(m)
)

+ δco

M∑
m=1

∑
m′:m′ 6=m

µ(m′)I(m)

=δco

(
M∑
m=1

I(m) +

M∑
m=1

µ(m)Ξ̃co,(m)

)
.

Similarly we can show that B3,ij =B2,ij .
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For B4,ij , we have

B4,ij =(δco)2EW,t
[
Wti

π

Wtj

π

]
=(δco)2

∫
f(ti)f(tj)dtidtj + (δco)2

(
1

π
− 1

) M∑
m=1

∫
ti,tj∈Im

f(ti)f(tj)dtidtj

=(δco)2 + (δco)2

M∑
m=1

[
µ(m)

]2
.

In summary, A3,ij equals to

A3,ij =

M∑
m=1

[
Ξ̃co,(m)

]2
+

M∑
m=1

M∑
m′=1

[
I(m,m′)

]2
+

M∑
m=1

∑
m′:m′ 6=m

(
I(m)I(m′) + I(m,m′)I(m′,m)

)
− 2δco

(
M∑
m=1

I(m) +

M∑
m=1

µ(m)Ξ̃co,(m)

)
+ (δco)2 + (δco)2

M∑
m=1

[
µ(m)

]2
=

M∑
m=1

[
Ξco,(m)

]2
+

(
δco−

M∑
m=1

I(m)

)2

+

M∑
m=1

∑
m′:m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
where Ξco,(m) = Ξ̃co,(m)− δcoµ(m).

The term Atreat is then equal to

Atreat =A1,ij + 2A2,ij +A3,ij

=

M∑
m=1

[
Ξinst,(m)

]2
+ 2

M∑
m=1

Ξinst,(m)Ξco,(m) +

M∑
m=1

[
Ξco,(m)

]2
+

(
δco−

M∑
m=1

I(m)

)2

+

M∑
m=1

∑
m′:m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)

=

M∑
m=1

(
Ξinst,(m) + Ξco,(m)

)2
+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
.

The second moment of Ecarryover is then equal to

EW,ε,t
[
(Ecarryover)

2
]

=Atreat + 2Across +Acontrol

=

M∑
m=1

(
Ξinst,(m) + Ξco,(m)

)2
+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)

+ 4

M∑
m=1

Ξ(m)µ
(m)

Y ctrl + 4

M∑
m=1

[
µ

(m)

Y ctrl

]2
=

M∑
m=1

(
Ξinst,(m) + Ξco,(m) + 2µ

(m)

Y ctrl

)2

+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
.

We then finish the proof of Lemma B.12. �

Lemma B.13 (Expected product of instantaneous effect and carryover effects). Under the

assumptions in Theorem 4.1, the expected value of the product of Einst and Ecarryover equals to

EW,ε,t [EinstEcarryover] =δgate

M∑
m=1

µ(m)
(

Ξinst,(m) + Ξco,(m) + 2µ
(m)

Y ctrl

)
.
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Proof of Lemma B.13 Next we compute the expected value of the product of Ecarryover and Einst.

EW,ε,t [EinstEcarryover]

=EW,ε,t

[
δgate

(
1

n

n∑
j=1

Wtj

π
− 1

)(
1

n

n∑
i=1

αti
(
Yti(W ,0, · · · ,0)−Yti(0, · · · ,0)−Wtiδ

gate
))]

+EW,ε,t

[
δgate

(
1

n

n∑
j=1

Wtj

π
− 1

)(
1

n

n∑
i=1

αtiYti(0, · · · ,0)

)]

=
1

n2

∑
i,j

δgateEt
[
(δinst
ti
− δinst) · Wti

π

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

:=A1,ij

+
1

n2

∑
i,j

δgateEW,t
[
αti(δ

co
ti

(W )− δcoWti)

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

:=A2,ij

+
1

n2

∑
i,j

δgateEW,t
[
αtiYti(0, · · · ,0)

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

:=A3,ij

.

For A1,ij , we have

A1,ij =δgate

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst) ·EW

[
Wti

π

(
Wtj

π
− 1

)
| ti, tj

]
f(ti)f(tj)dtidtj

+ δgate

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

(δinst
ti
− δinst) · EW

[
Wti

π

(
Wtj

π
− 1

)
| ti, tj

]
︸ ︷︷ ︸
=0 as ti and tj in different interval

f(ti)f(tj)dtidtj

=δgate 1−π
π

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst)f(ti)f(tj)dtidtj

=δgate

M∑
m=1

Ξinst,(m)µ(m) . (π= 1/2)

For A2,ij , we have

A2,ij = δgateEW,t
[
αtiδ

co
ti

(W )

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

:=B1,ij

− δgateδcoEW,t
[
αtiWti

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

:=B2,ij

.

For B2,ij , we have

B2,ij =δgateδcoEW,t
[
αtiWti

(
Wtj

π
− 1

)]
= δcoEW,t

[
Wti

π

(
Wtj

π
− 1

)]
=δgateδco 1−π

π

M∑
m=1

∫
ti,tj∈Im

f(ti)f(tj)dtidtj

=δgateδco

M∑
m=1

[
µ(m)

]2
. (π= 1/2)

For B1,ij , we have

B1,ij = δgateEW,t
[
αtiδ

co
ti

(W )

(
Wtj

π
− 1

)]
=δgate

M∑
m=1

∫
ti,tj∈Im

EW
[
Wti −π
π(1−π)

Wtj −π
π

δco
ti

(W ) | ti, tj
]
f(ti)f(tj)dtidtj



54

+ δgate

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

EW
[
Wti −π
π(1−π)

Wtj −π
π

δco
ti

(W ) | ti, tj
]
f(ti)f(tj)dtidtj (this term is zero)

=δgate

M∑
m=1

∫
ti,tj∈Im

δco
ti

(
1−π
π

[∫
t′∈Im

dco
ti

(t′)f(t′)dt′
]

+
∑
k:k 6=m

π

π

[∫
t′∈Ik

dco
ti

(t′)f(t′)dt′
])

f(ti)f(tj)dtidtj

=δgate

M∑
m=1

∫
ti,tj∈Im

δco
ti
f(ti)f(tj)dtidtj = δgate

M∑
m=1

µ(m)Γ̃(m) .

For A3,ij , we have

A3,ij =δgateEW,t
[
αtiYti(0, · · · ,0)

(
Wtj

π
− 1

)]
=2δgate

M∑
m=1

∫
ti,tj∈Im

Yti(0, · · · ,0)f(ti)f(tj)dtidtj

=2δgate

M∑
m=1

µ(m)µ
(m)

Y ctrl .

Therefore, we have

EW,ε,t [Einst · Ecarryover] =A1,ij +B1,ij −B2,ij +A3,ij

=δgate

M∑
m=1

µ(m)
(

Ξinst,(m) + Ξco,(m) + 2µ
(m)

Y ctrl

)
We then finish the proof of Lemma B.13. �

Lemma B.14 (Second moment of effects from other interventions). Under the assumptions in

Theorem 4.1, the bias from simultaneous interventions is

EW,ε,t
[
(Esimul)

2
]

=

M∑
m=1

M∑
m′=1

S(m,m′)
var ,

where S(m,m′)
var is defined in Equation (A.1).

Proof of Lemma B.14 As events are sampled i.i.d. from distribution, we have

EW,ε,t
[
(Esimul)

2
]

=EW,ε,t

( 1

n

n∑
i=1

αti (Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0))

)2


=
1

n2

∑
i,j

EW,t
[
Wti −π
π(1−π)

Wtj −π
π(1−π)

EW s
1 ,··· ,W

s
K

[(Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0)) ·(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)
|W , ti, tj ]] (by the law of total expectation)

=EW,t
[
Wti −π
π(1−π)

Wtj −π
π(1−π)

· δsimul,2
ti,tj

(W )

]
(by definition of δ†ti,tj (W ))

=4

M∑
m=1

∫
ti,tj∈Im

EW [δsimul,2
ti,tj

(W ) | ti, tj ]f(ti)f(tj)dtidtj

+ 4

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

Φ2†
ti,tj

f(ti)f(tj)dtidtj

=

M∑
m=1

M∑
m′=1

S(m,m′)
var
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following the definition of S(m,m′)
var in Equation (A.1) with

δsimul,2
ti,tj

(W ) =EW s
1 ,··· ,W

s
K

[(Yti(W ,W s
1 , · · · ,W s

K)−Yti(W ,0, · · · ,0)) ·(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)
|W , ti, tj

]
and

Φ2†
`,ti,tj

=
1

4

(
EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δsimul,2
ti,tj

(W (−m,−m′),W (m,m′) = (0,0))

])
.

We then finish the proof of Lemma B.14. �

Lemma B.15 (Expected product of Esimul and Einst). Under the assumptions in Theorem 4.2, we

have

EW,ε,t [Esimul · Einst] =

M∑
m=1

M∑
m′=1

δgateµ(m′)S
(m,m′)
1 ,

where S
(m,m′)
1 is defined in Equation (A.3).

Proof of Lemma B.15 The expected value of the product of Esimul and Einst is equal to

EW,ε,t [EsimulEinst] =
1

n2

∑
i,j

EW,t
[
αti (Yti(W ,W s

1 , · · · ,W s
K)−Yti(W ,0, · · · ,0)) δgate

(
Wtj

π
− 1

)]
︸ ︷︷ ︸

Aij

.

For Aij , we have

Aij = δgateEW,t
[
Wti −π
π(1−π)

(
Wtj

π
− 1

)
δsimul
ti

(W )

]
=δgate

M∑
m=1

∫
ti,tj∈Im

EW
[
Wti −π
π(1−π)

(
Wtj

π
− 1

)
δsimul
ti

(W ) | titj
]
f(ti)f(tj)dtidtj

+ δgate

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

EW
[
Wti −π
π(1−π)

(
Wtj

π
− 1

)
δsimul
ti

(W ) | titj
]
f(ti)f(tj)dtidtj

=2δgate

M∑
m=1

∫
ti,tj∈Im

EW
[
δsimul
ti

(W )

]
f(ti)f(tj)dtidtj

+ 2δgate

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

Φ
simul,(−m′)
ti

f(ti)f(tj)dtidtj ,

where

Φ
simul,(−m′)
ti

=
1

4

(
EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δsimul
ti

(W (−m,−m′),W (m,m′) = (0,0))

])
.
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Therefore,

EW,ε,t [EinstEsimul] =2δgate

M∑
m=1

µ(m)

∫
ti∈Im

EW
[
δsimul
ti

(W )

]
f(ti)dti

+ 2δgate

M∑
m=1

∑
m′:m′ 6=m

µ(m′)

∫
ti∈Im

Φ
simul,(−m′)
ti

f(ti)dti

=δgate

M∑
m=1

M∑
m′=1

µ(m′)S
(m,m′)
1

following the definition of S
(m,m′)
1 in Equation A.3. We then finish the proof of Lemma B.15. �

Lemma B.16 (Expected product of Esimul and Ecarryover). Under the assumptions in Theorem 4.2, we

have

EW,ε,t [Esimul · Ecarryover] =

M∑
m=1

M∑
m′=1

[
2µ

(m′)
Y ctrlS

(m,m′)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3

]
,

where S
(m,m′)
1 , S

(m,m′)
2 , and S

(m,m′)
3 are defined in Equations (A.3), (A.4), and (A.5) respectively.

Proof of Lemma B.16 The expected value of the product of Esimul and Ecarryover is equal to

EW,ε,t [EcarryoverEsimul]

=
1

n2

∑
i,j

EW,t
[
αti(δ

inst
ti
− δinst)Wtiαtj

(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]︸ ︷︷ ︸
:=A1,ij

+
1

n2

∑
i,j

EW,t
[
αti(δ

co
ti

(W )− δcoWti)αtj
(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]︸ ︷︷ ︸
:=A2,ij

+
1

n2

∑
i,j

EW,t
[
αtiYti(0, · · · ,0)αtj

(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]︸ ︷︷ ︸
:=A3,ij

.

For A1,ij , we have

A1,ij =EW,t
[
Wti

π

Wtj −π
π(1−π)

(δinst
ti
− δinst)

(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]
=EW,t

[
Wti

π

Wtj −π
π(1−π)

(δinst
ti
− δinst)δsimul

tj
(W )

]
=

1

π

M∑
m=1

∫
ti,tj∈Im

(δinst
ti
− δinst)EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)

]
f(ti)f(tj)dtidtj

+

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

(δinst
ti
− δinst)Φ

simul,(−m′)†
tj

f(ti)f(tj)dtidtj

=2

M∑
m=1

Ξinst,(m)

∫
tj∈Im

EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)

]
f(tj)dtj

+ 2

M∑
m=1

Ξinst,(m)
∑

m′:m′ 6=m

∫
tj∈Im′

Φ
simul,(−m′)†
tj

f(tj)dtj

=

M∑
m=1

M∑
m′=1

Ξinst,(m)S
(m,m′)
2 ,
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following the definition of S
(m,m′)
2 in Equation (A.4) and

Φ
simul,(−m′)†
tj

=
1

2

(
EW (−m,−m′)

[
δ†tj (W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δ†tj (W (−m,−m′),W (m,m′) = (1,0))

])
.

For A2,ij , we have

A2,ij =EW,t
[
Wti −π
π(1−π)

Wtj −π
π(1−π)

δco
ti

(W )δsimul
tj

(W )

]
︸ ︷︷ ︸

:=B1,ij

− δcoEW,t
[
Wti

π

Wtj −π
π(1−π)

δsimul
tj

(W )

]
︸ ︷︷ ︸

:=B2,ij

.

For B1,ij , we have

B1,ij =EW,t
[
Wti −π
π(1−π)

Wtj −π
π(1−π)

δco
ti

(W )δsimul
tj

(W )

]
=4

M∑
m=1

∫
ti,tj∈Im

EW
[
δco
ti

(W )δsimul
tj

(W )
]
f(ti)f(tj)dtidtj (π= 1/2)

+ 4
∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

Φco,simul
ti,tj

f(ti)f(tj)dtidtj

=

M∑
m=1

M∑
m′=1

S
(m,m′)
3 ,

following the definition of S
(m,m′)
3 in Equation (A.5) and

Φco,simul
ti,tj

=
1

4

(
EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (1,1)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (1,1))

]
−EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (1,0)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (1,0))

]
−EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (0,1)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (0,1))

]
+EW (−m,−m′)

[
δco
ti

(W (−m,−m′),W (m,m′) = (0,0)) · δsimul
tj

(W (−m,−m′),W (m,m′) = (0,0))

])
.

For B2,ij , we have

B2,ij =δcoEW,t
[
Wti

π

Wtj −π
π(1−π)

δsimul
tj

(W )

]
=2δco

M∑
m=1

µ(m)

∫
tj∈Im

EW (−m)

[
δsimul
tj

(W (−m),W (m) = 1)

]
f(tj)dtj

+ 2δco

M∑
m=1

µ(m)
∑

m′:m′ 6=m

∫
tj∈Im′

Φ
simul,(−m′)†
tj

f(tj)dtj

=

M∑
m=1

M∑
m′=1

δcoµ(m)S
(m,m′)
2 .

For A3,ij , we have

A3,ij =EW,t
[
αtiYti(0, · · · ,0)αtj

(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]
=EW,t

[
Wti −π
π(1−π)

Wtj −π
π(1−π)

Yti(0, · · · ,0)
(
Ytj (W ,W s

1 , · · · ,W s
K)−Ytj (W ,0, · · · ,0)

)]
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=4

M∑
m=1

∫
ti,tj∈Im

Yti(0, · · · ,0)EW
[
δsimul
tj

(W )
]
f(ti)f(tj)dtidtj

+ 4

M∑
m=1

∑
m′:m′ 6=m

∫
ti∈Im,tj∈Im′

Yti(0, · · · ,0)Φ
simul,(−m)
tj

f(ti)f(tj)dtidtj

=4

M∑
m=1

µ
(m)

Y ctrl

∫
tj∈Im

EW
[
δsimul
tj

(W )
]
f(tj)dtj + 4

M∑
m=1

µ
(m)

Y ctrl

∑
m′:m′ 6=m

∫
tj∈Im′

Φ
simul,(−m)
tj

f(tj)dtj

=2

M∑
m=1

M∑
m′=1

µ
(m′)
Y ctrlS

(m,m′)
1 ,

following the definition of S
(m,m′)
1 in Equation A.3. Then we have

EW,ε,t [EsimulEcarryover]

=A1,ij +B1,ij −B2,ij︸ ︷︷ ︸
A2,ij

+A3,ij

=

M∑
m=1

M∑
m′=1

Ξinst,(m)S
(m,m′)
2 +

M∑
m=1

M∑
m′=1

S
(m,m′)
3 −

M∑
m=1

M∑
m′=1

δcoµ(m)S
(m,m′)
2 + 2

M∑
m=1

M∑
m′=1

µ
(m′)
Y ctrlS

(m,m′)
1

=

M∑
m=1

M∑
m′=1

[
2µ

(m′)
Y ctrlS

(m,m′)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3

]
.

We then finish the proof of Lemma B.16. �

Proof of Theorem 4.2 Following Lemmas B.11, B.12, and B.13, we have

EW,ε,t
[
(Einst + Ecarryover)

2
]

=EW,ε,t
[
(Einst)

2
]

+EW,ε,t
[
(Ecarryover)

2
]

+ 2EW,ε,t [EinstEcarryover]

=

M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)2

+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
,

where Ξ(m) = Ξinst,(m) + Ξco,(m) + δgateµ(m).

Following Lemmas B.6-B.16, the mean-squared error of δ̂gate equals to

EW,ε,t
[(
δ̂gate− δgate

)2
]

=
4

n

M∑
m=1

(
V (m) + (n− 1)C(m)

)
(equals to EW,ε,t

[
(Emeas)

2
]
)

+

M∑
m=1

(
Ξ(m) + 2µ

(m)

Y ctrl

)2

+

(
M∑
m=1

I(m)− δco

)2

+

M∑
m=1

∑
m′ 6=m

([
I(m,m′)

]2
+ I(m,m′)I(m′,m)

)
(equals to EW,ε,t

[
(Einst + Ecarryover)

2
]
)

+

M∑
m=1

M∑
m′=1

S(m,m′)
var (equals to EW,ε,t

[
(Esimul)

2
]
)

+ 2

M∑
m=1

M∑
m′=1

δgateµ(m′)S
(m,m′)
1 (equals to 2EW,ε,t [EsimulEinst])

+ 2

M∑
m=1

M∑
m′=1

[
2µ

(m′)
Y ctrlS

(m,m′)
1 +

(
Ξinst,(m)− δcoµ(m)

)
S

(m,m′)
2 +S

(m,m′)
3

]
(equals to 2EW,ε,t [EsimulEcarryover])

= Var(Emeas) + Bias(Ecarryover)
2 + Var(Einst + Ecarryover) +E[E2

simul] + 2E[(Einst + Ecarryover) · Esimul] .

We then finish the proof of Theorem 4.2. �


	Introduction
	Summary of Contributions
	Related Work
	Problem Setup
	Estimands
	Post-Experiment Estimation
	Switchback Design
	A Case Study on Ride-Sharing Platform
	Analysis of Historical Data
	Event Density
	Global Control Outcomes and Heterogeneous Measurement Errors
	Meta-Analysis of Historical Experiments

	Synthetic Experiments
	Setup of Synthetic Experiments
	Results


	Analysis of Switchback Design
	Assumptions
	Interval-Level Statistics
	Main Results

	Simulation
	Instantaneous and Carryover Effects Only
	Total Treatment Effects with Measurement Errors
	Simultaneous Interventions
	Periodic Event Density


	Discussion and Conclusion
	Supplementary Results
	Supplementary Empirical Results
	Additional examples
	Notations
	Additional Examples
	Proof of Main Results
	Proof of Proposition 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2




