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QTM 347 Machine Learning

Lecture 19: Midterm review



Announcements

• The midterm will be available from 4/9 12:00 AM until 4/12 11:59 PM 
at Quizzes on Canvas 

• You can choose any 24 hours in between to finish it

• Once you decide to take it, you can open the quiz and the time starts to 
count

• Once you finish (within 24 hours), upload your solution (two files: one 
html and one ipynb file) and click submit quiz on Canvas
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Midterm
• Cover the material from Lectures 1-18

• Problems are similar to those in homework assignments

• A combination of  conceptual and coding questions

• You need to finish it independently

• Open book, open notes. Not allowed to use chatGPT

• You cannot talk to anyone about the exam until 4/12 11:59 PM 
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This course
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Supervised vs. unsupervised machine learning

• Supervised machine learning (main focus)

• Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , ⋯ , (𝑥𝑛, 𝑦𝑛)
• 𝑥𝑖: predictors

• 𝑦𝑖: response

• Task: Fit a model that relates response to predictors

• E.g., linear regression, logistic regression, KNN, LDA/QDA, tree-based methods

• Unsupervised machine learning

• Data: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛

• Task: Understand the relationships between variables/observations

• E.g., principal component analysis
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Supervised machine learning: Regression vs. classification problems

• Suppose we observe 𝑛 data points: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , ⋯ , (𝑥𝑛, 𝑦𝑛)
• 𝑥𝑖 : predictors
• 𝑦𝑖 : response

• Supervised machine learning finds a function 𝑓 that maps 𝑋 to 𝑌

• Regression problem
• Find a function 𝑓 that maps 𝑌 = 𝑓 𝑋 + 𝜀, with 𝐸 𝜀 = 0
• Example: Predict sales of  a product (𝑌) in 200 markets using the expenditure of  three media 

(𝑋: TV, radio, and newspaper)

• Classification problem
• Estimate 𝑃 𝑌|𝑋 : conditional distribution of  𝑌 given 𝑋
• Example: Predict whether a customer defaults (binary 𝑌) using income, credit card balance, 

student status, etc.
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Training data, training error, test data, test error

• Training data: the observations, 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , ⋯ , (𝑥𝑛, 𝑦𝑛), that we use 
estimate 𝑓 (𝑓 could be linear, quadratic, etc)

• Training error 
• Regression problem: MSE =

1

𝑛
σ𝑖=1

𝑛 (𝑦𝑖 − መ𝑓(𝑥𝑖))2

• Classification problem: classification error
1

𝑛
σ𝑖=1

𝑛 1(𝑦𝑖 ≠ ො𝑦𝑖)

• Test data: the data, (𝑥1
′ , 𝑦1

′), (𝑥2
′ , 𝑦2

′ ),…, (𝑥𝑚
′ , 𝑦𝑚

′ ), that are previous unseen 
and not used to fit 𝑓

• Test error
• Regression problem: MSE =

1

𝑚
σ𝑖=1

𝑚 (𝑦𝑖
′ − መ𝑓(𝑥𝑖

′))2

• Classification problem: classification error
1

𝑚
σ𝑖=1

𝑚 1(𝑦𝑖
′ ≠ ො𝑦𝑖

′)
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Our goal and challenge in supervised machine learning

• Our goal in supervised learning is to minimize the (test) prediction error

• Regression problem

• Typically, minimize test Mean Squared Error (MSE)

• Classification problem

• Typically, minimize test 0-1 loss, Gini index, entropy loss

• A low training MSE/classification error does not imply a low test MSE 
/classification error …
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MSE varies with model flexibility
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Test MSE = 0.533 Test MSE = 0.518 Test MSE = 0.564

Training MSE = 0.354Training MSE = 0.439 Training MSE = 0.425 Training MSE

Test MSE

More flexible model



Bias-variance decomposition of  MSE
• The MSE at a test point 𝑥0 can be decomposed as

MSE 𝑥0 = bias2 መ𝑓 𝑥0 + var መ𝑓 𝑥0 + 𝑉𝑌|𝑋 𝑌 ∣ 𝑋 = 𝑥0

• bias መ𝑓 𝑥0 = 𝑓 𝑥0 − 𝐸𝒟[ መ𝑓(𝑥0)]

• This measures the deviation of  the average prediction መ𝑓 𝑥0  from the truth 𝑓 𝑥0

• var መ𝑓 𝑥0 = 𝐸𝒟
መ𝑓 𝑥0 − 𝐸𝒟[ መ𝑓(𝑥0)]

2

• How much the estimate of  መ𝑓  at 𝑥0 changes when we sample new training data

• If  𝑌 = 𝑓 𝑋 + 𝜀 with E 𝜀 = 0 and V 𝜀 = 𝜎𝜀
2 , then 𝑉𝑌|𝑋 𝑌 ∣ 𝑋 = 𝑥0 = 𝜎𝜀

2
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Example of  bias-variance decomposition of  MSE 
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bias

Proportional to variance

• Suppose we would like to train a 
model to learn the true regression 
function 𝑓 𝑥 = 𝑥2 (𝑥 is a scalar)

• We use 

• A constant function: መ𝑓0 𝑥 = መ𝛽0

• A linear function: መ𝑓1 𝑥 = መ𝛽0 + 𝑥 ⋅ መ𝛽1

• A quadratic function: መ𝑓2 𝑥 = መ𝛽0 + 𝑥 ⋅
መ𝛽1 + 𝑥2 ⋅ መ𝛽2

• A ninth degree polynomial function: 
መ𝑓9 𝑥 = መ𝛽0 + 𝑥 ⋅ መ𝛽1 + ⋯ + 𝑥9 ⋅ መ𝛽9

HW 1 Problem 3



In practice, use data splitting strategy
• Split the data into the training and test sets

• Choose parameters by cross-validation on the training data

• E.g., 𝜆 in lasso/ridge, 𝜆 and 𝛼 in Elastic net

• Fit various models on the training set using the optimal parameters selected by cross-
validation

• Evaluate/select models on the test set

• Cross validation

• 𝑘-fold cross-validation

1. Split the data into 𝑘 subsets or folds

2. For every 𝑖 = 1, ⋯ , 𝑘:

1. train the model on every fold except the 𝑖th fold

2. compute the test error on the 𝑖th fold 

3. Average the test errors

• Leave one out cross-validation  (𝑛-fold cross validation)
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𝐾-nearest neighbors
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• 𝐾-nearest neighbors: A simple and well-known nonparametric method
• Given a value for 𝐾 and a prediction point 𝑥0

• 𝑁𝐾(𝑥0) represents the set of  𝐾 training observations that are closest to 𝑥0

• Regression problem

• መ𝑓 𝑥0 =
1

𝐾
σ𝑥𝑖∈𝑁𝐾(𝑥0) 𝑦𝑖

• In Python, use KNeighborsRegressor() in sklearn.neighbors

• Classification problem

• ෠𝑃 𝑌 = 𝑗|𝑋 = 𝑥0 =
1

𝐾
σ𝑥𝑖∈𝑁𝐾(𝑥0) 𝐼(𝑦𝑖 = 𝑗)

• In Python, use KNeighborsClassifier() in sklearn.neighbors

• Bias-variance tradeoff  for the optimal 𝐾
• Large 𝐾, less flexible, large bias, small variance

• Small 𝐾, more flexible, small bias, large variance

𝐾 = 1 𝐾 = 9

HW 1 Problem 2



Classification problem: Discriminative vs. generative methods

• Discriminative methods

• Directly model 𝑃 𝑌 = 𝑘|𝑋 = 𝑥  and classify

• E.g., logistic regression

• In Python, use GLM() in statsmodels.api

• Generative methods 

1. Model the joint probability 𝑝 𝑥, 𝑦  

2. Assume some distribution for conditional distribution of  𝑋 given 𝑌 = 𝑘, 
𝑃 𝑋 = 𝑥|𝑌 = 𝑘

3. Bayes theorem is applied to obtain 𝑃 𝑌 = 𝑘|𝑋 = 𝑥  and classify

• E.g., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)

• In Python, use LinearDiscriminantAnalysis() and 
QuadraticDiscriminantAnalysis() in sklearn.discriminant_analysis
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LDA and QDA
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• To estimate 𝑃 𝑌|𝑋
1. Estimate 𝑃 𝑋 = 𝑥|𝑌 = 𝑘  and 𝑃(𝑌 = 𝑘)

a. 𝑃 𝑋 = 𝑥|𝑌 = 𝑘
I. LDA: Assume 𝑃 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑁(𝜇𝑘, Σ)

II. QDA: Assume 𝑃 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑁(𝜇𝑘, Σ𝑘)

III. Estimate 𝜇𝑘 and Σ (or Σ𝑘)

b. 𝑃(𝑌 = 𝑘)
a. Estimated the fraction of  training samples of class 𝑘

2. Apply Bayesian rule 𝑃 𝑌 = 𝑘|𝑋 = 𝑥 =
𝑃 𝑋=𝑥|𝑌=𝑘 𝑃(𝑌=𝑘)

σ𝑗 𝑃 𝑋=𝑥|𝑌=𝑗 𝑃(𝑌=𝑗)
 

QDA

LDA

HW 1 Problem 4



Classification problem: Bayes classifier

• Bayes classifier (for both discriminative vs. generative methods)

• ො𝑦𝑖 = argmax𝑗𝑃(𝑌 = 𝑗|𝑋 = 𝑥𝑖) 

• Assign unit 𝑖 the class with largest probability
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Regression problem

• Suppose a linear model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +𝛽2𝑥𝑖2 + ⋯ +𝛽𝑝𝑥𝑖𝑝 +𝜀𝑖

• If  𝑝 is small compared to 𝑛, 

• We can estimate 𝛽0, ⋯ , 𝛽𝑝 by linear regression, that minimizes the RSS

• RSS = σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)2 = σ𝑖=1

𝑛 (𝑦𝑖 − መ𝛽0 − መ𝛽1𝑥𝑖1 − መ𝛽2𝑥𝑖2 − ⋯ − መ𝛽𝑝𝑥𝑖𝑝)2

• If  𝑝 is large compared to 𝑛, use model selection or regularization 
methods
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Model selection methods

• Select a small subset of  predictors (whether intercept is included)

• Best subset selection

• Akaike Information Criterion (AIC or 𝐶𝑝): 𝐶𝑝 =
1

𝑛
(RSS + 2𝑘 ො𝜎2)

• ො𝜎2 is an estimate of  the irreducible error, and 𝑘 is the number of  predictors in the model

• Bayesian Information Criterion (BIC): BIC =
1

𝑛
(RSS + log 𝑛 𝑘 ො𝜎2)

• Adjusted 𝑅2 

• Stepwise selection

• Forward selection: Start with a model with no predictors, add predictors to the model one-at-
a-time

• Backward selection: Start with a model with 𝑝 predictors, remove the least useful predictor 
one-at-a-time

• See the notebook (lecture 11 – subset selection.ipynb)
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Shrinkage methods 
• Linear regression minimizes RSS

•  RSS = σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)2 = σ𝑖=1

𝑛 (𝑦𝑖 − መ𝛽0 − መ𝛽1𝑥𝑖1 − መ𝛽2𝑥𝑖2 − ⋯ − መ𝛽𝑝𝑥𝑖𝑝)2

• Ridge regression minimizes RSS+ 𝜆 σ𝑗=1
𝑝

𝛽𝑗
2

• 𝜆 σ𝑗=1
𝑝

𝛽𝑗
2: Shrinkage penalty, small if  𝛽1, ⋯ , 𝛽𝑝 are close to zero

• In Python, use ElasticNet() with l1_ratio=0 in sklearn.linear_model

• The lasso minimizes RSS+𝜆 σ𝑗=1
𝑝

𝛽𝑗

• 𝜆 σ𝑗=1
𝑝

𝛽𝑗 : Shrinkage penalty, small if  𝛽1, ⋯ , 𝛽𝑝 are close to zero 
• In Python, use ElasticNet() with l1_ratio=1 in sklearn.linear_model

• Elastic net minimizes RSS+ 𝜆 1 − 𝛼 ⋅ σ𝑗=1
𝑝

𝛽𝑗
2 /2 + 𝛼 ⋅ σ𝑗=1

𝑝
𝛽𝑗

• 𝜆 1 − 𝛼 ⋅ σ𝑗=1
𝑝

𝛽𝑗
2 /2 + 𝛼 ⋅ σ𝑗=1

𝑝
𝛽𝑗 : Shrinkage penalty, small if  𝛽1, ⋯ , 𝛽𝑝 are close 

to zero
• In Python, use ElasticNet() in sklearn.linear_model
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Coefficients of  Ridge and the Lasso
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• Predict default in the Credit dataset

A lot of  small coefficients throughout 

the regularization path 

Ridge regression The Lasso

Shrink coefficients to zero, perform 

variable selection
HW 2 Problem 4



Principal component analysis 
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HW 3 Problem 3See the notebook (lecture 17 – pca.ipynb)



Bootstrap
• Resample the data by drawing 𝑛 samples with replacement from the actual 

observations

• Can be used to calculate the standard errors of  mean, quantile, regression 
coefficient, prediction at a test point…

• See the notebook (lecture 7 – cross-validation and bootstrap.ipynb)
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Decision tree
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1. Partition the feature space into 𝐽 distinct and non-overlapping 
regions, 𝑅1, 𝑅2, ⋯ , 𝑅𝐽

• Regression tree: Based on MSE

• Classification tree: Based on Gini index or entropy 

2. Make the same prediction for every observation in region 𝑅𝑗

• Regression tree: Mean of  the training observations in 𝑅𝑗

• Classification tree: Mode of  the training observations in 𝑅𝑗

• In Python, use DecisionTreeClassifier() in sklearn.tree for classification tree; 
use DecisionTreeRegressor() in sklearn.tree for regression tree

3. Prune a large tree from leaves to the root to control overfitting

• In Python, use cost_complexity_pruning_path()

HW 3 Problems 1 and 2

See the notebook (lecture 16 - decision tree, random forest and boosting.ipynb)



Bagging and random forest
• We fit a decision tree to different Bootstrap samples

• When growing the tree

• Bagging: Use all predictors 

• Random forest: use 𝑚 < 𝑝 predictors 

• Lead to very different (or “uncorrelated”) trees from each sample

• Finally, average the prediction of  each tree

• Pro: reduce variance of  decision trees

• Generalization of  KNN

• In Python, use RandomForestRegressor() in sklearn.ensemble 

4/7/2025
HW 3 Problems 1 and 2



Gradient boosting

• Boosted trees

• Trees are grown sequentially using the information left from previously grown 
trees

• Each tree is fit on a modified version of  the original data

• Idea is similar to partial least squares

• In Python, use GradientBoostingRegressor() for regression problems and 
GradientBoostingClassifier() for classification problems in sklearn.ensemble 

4/7/2025
HW 3 Problem 1
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