QTM 347 Machine Learning

Lecture 18: PCA

Ruoxuan Xiong

Suggested reading: ISI. Chapter 6 and 12




Lecture plan
* PCA
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How to perform PCA 1

1. Estimate the covariance matrix X of Xq, X5, - ,Xp.

 Jis ap X p matrix, the (i, j)-th entry being the covariance of X;, X;.

* Example: population size (pop) and ad spending (ad) for 100 cities.

ad (X,)
§_ Var(X;) Cov(Xy,X5)
~ [Cov(Xy,X,)  Var(X,)
@
(] ® °
. P ~  13.816 1.826
¢ ° pop (X1) >= 11826 2.184
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How to perform PCA 1I

2. Calculate the eigenvalues and eigenvectors of the covariance.
a [3.816 1.826

e Covariance matrix: 2. =

1.826 2.184]1
ad (X3)
[ Unit norm eigenvectors
0.839 0.544
o (0.544) <—O.839>
® o
® e '
o ° pop (X1) Eigenvalues
ﬂ'l — 5 /’{2 — 1
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Projection to first principal component

3. Select the first principal component

* First principal component, which is corresponds to the following equation:
» z;; = 0.839 X (pop; — pop) + 0.544 x (ad; — ad) and Var(z;;) = 4

ad (X5) Unit norm eigenvectors (direction)

t 0.839
0.544

Eigenvalues (magnitude)

pop (Xl) A]_ — 5
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How to perform PCA IV

4. Select the second principal component (if necessary)

* The second principal component Z, has largest variance subject to being
orthogonal to first principal component Z4

* z;; = 0.544 X (pop; — pop) — 0.839 x (ad; — ad) and Var(z;;) = 4,

ad (X,) Unit norm eigenvectors (direction)
0.839 0.544
0.544 —0.839

(]
M > Eigenvalues (magnitude)

® ° pop (Xl) /12 =1
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Summarizing PCA

Small table

EEERE < |
x ok ok ok X " -
o
x ok ok ok X é . i
x ok ok ok X o
>
x  kx k k%
x ok ok ok X
x ok ok ok X
x ok ok ok X l
* % * * ok * [k |k |k |k
« % % % %  Covarnlance [« |* |x |* |x 51 A1|] Big I
- — A
* * * * * matrix * * * * * _ 2 * *
k% ok ok ok OB T T R % * ok
4 Ay
1. T T T x | % | *x | *x |x Small x ok
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More on PCA

e Mean: Variables should be centered to have mean zero

* First principal component (PC) reflects the direction of max variance, instead of the
mean of the data

* Variance: Choose case by case whether to scale variables to have unit variance
* Results typically depernd on whether variables have been individually scaled

e Small-scale variables will have small variance

o Whether to scale depends on whether variables are zzeasured on the same unit
* Example 1: Variables are expression levels of genes (no need to scale the genes)

* Example 2: Variables include ad spending and population size (scale the variables)
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Choosing the number of PCs

* Choosing the number of PCs:

* How much information is lost by projecting observations on the first M PCs?
* Equivalently, how much variance of the data is not contained 1n the first M PCs?
* Choose the smallest number that explains a sizable amount of the variation

* Higenvalues of feature covariance matrix: A4, A5, -, 4,

* Scree plot shows the variance explained by each PC (an ad hoc method):
A1 A2 y Ap

A+2x+ 40y " A+ +42y K A+Ax++Ap
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The first PC explains 62%
The next PC explains 24.7%



PCA for low-rank matrix factorization
BEEEE 42
k% ok % % k% T
LN **X*****

* ook ok ok ok x %
x ok ok k% * ok
* ok ok ok ok * ok
~ [ ] L[] [ ] . . .
* ok ok k% ~ x % e PCA finds a low-rank matrix factorization that minimizes

the reconstruction error

X * * X X B S X
e e e e o  Used when data has inherent low-dimensional structute
x ok ok k% * % * Example: Rows are users and columns are movies
kook ok kX kK e We have
Vi

% * Xk B S X Xk

* X I~ [Z 1 Z 2] VT
x %k %k %k  x x ok 2
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7

Rationale behind low-rank approximation

* For any jth PC, we have XV = Zj, or equivalently, for each unit i, Z;; = V3 jX;; +
VZinZ + -+ ijXip> where Vk] is the kth entry n V]

* Right multiply XV; = Z; by V, and sum over j, we have ¥.7_, XV;V; =3¥7_ | Z;V]

* As X does not depend on j, we can take X out from the sum and Z?ﬂ XV]-V]-T =
XY_,vVi =X

. T . . .
Here we use an important property of eigenvectors: 3.0 i=1VjVj = I (identity matrix)

_
- V1 Vi

X = ZZV o Zpl| i | = [2h Zy]|. R
VI Vs,

* Third to last eigenvectors are truncated when Var(Z;) is small for large j = 3,++, p
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* In data streaming services (e.g., Netflix, Amazon), most of the rating

Missing values and matrix completion

matrix is missing --- users only rated a tiny fraction of all movies/items

* We use the approximation

% LA X
Vi & P e & &
<& PRI G VU <&
X =~ [Z 1 Z 2] 1 é\\\} Q’O @NL' -\:\ 5 QO\ @'\ N
T xL\’G N A % 0 v N,
VZ A‘% ' \”{\w L Q n -S{Q} &Y :. \\,SC &Q-. Z"\ C%‘ OL
ies 1 67 P C NS S P I Sl it
Most entries in X are zissing - :
Zy  Z3]: latent user features (e.g., cliques) 3 3 3
- 2 4 2
T
1 . 3
T]: latent movie features (e.g., genres) 5 1 4
V2 2 4
. . . 5 3
Estimate Z and V using observed entries in X
3 5 1

An zferative algorithm:

1. Impute missing entries by X (mean)

2. Apply PCA or similar methods to estimate Z and V
3. Use estimated Z and V to impute missing entries in X
4

Repeat Steps 2 and 3 until convergence
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