QTM 347 Machine Learning

Lecture 17: PCA

Ruoxuan Xiong

Suggested reading: ISL. Chapter 6




Lecture plan

* Principal component analysis
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Principal component analysis (PCA)
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Reduce dimensionality (stock return data)
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Principal component analysis (PCA)

* Find M features, Z1,Z;, "+, Zy, that can “best represent” the original p

features XliXZJ ,Xp

*MKLp

* Reduce the dimensionality of X, X5, -+, Xp

* Unsupervised learning method

* Question: How should we select the M features?




Intuition

* When your “big data” 1s too big

* Suppose we are taking multiple pictures from ditferent angles
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Intuition

* Suppose we are taking multiple pictures from ditferent angles

* We have obtained data points from different angles
* Which is the “important” direction?

* Principal component analysis finds this “important” direction
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* Five features (p = 5) in the Boston housing data

e Reduce them to M = 2 features

v
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How to perform PCA 1

1. Estimate the covariance matrix X of Xq, X5, - ,Xp

 Jis ap X p matrix, the (i, j)-th entry being the covariance of X;, X;

* Example: population size (pop) and ad spending (ad) for 100 cities

ad (X;)
§_ Var(X;) Cov(Xy,X5)
~ [Cov(Xy,X,)  Var(X,)
@
(] ® ®
. P ~ 13.816 1.826
¢ ° pop (X1) >= 11826 2.184
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How to perform PCA 1I

2. Calculate the eigenvalues and eigenvectors of the covariance
a [3.816 1.826

e Covariance matrix: 2. =

1.826 2.184
ad (X3)
[ Unit norm eigenvectors
0.839 0.544
o (0.544) <—O.839>
® e
® e '
o ° pop (X1) Eigenvalues
5 1
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How to perform PCA III

3. Select the first principal component

ad (X3)
[ Unit norm eigenvectors (direction)
0.839 0.544
o 0.544 —0.839>

® o _<
S @ ]
o ° pop (X1) Eigenvalues (magnitude)

5 1
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First principal component

* Geometric interpretation: (¢4, 1) = (0.839,0.544) is the solution to

¢ MﬂXimize Val‘ (q’)ll X (pOpl _ W) + ¢21 X (adl _ ﬁ))
* Subject to the constraint ¢, + ¢35, = 1

Unit norm eigenvectors (direction)

ad (XZ) 0.839
<0.544>
e pop (X;)
S ° Eigenvalues (magnitude)
5

+ Var (0.839 x (pop; — pop) + 0.544 x (ad; —ad)) = 5
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Projection to first principal component

* First principal component, which is a line, corresponds to the following
equation:
e z;71 = 0.839 X (pop; — pop) + 0.544 X (adi — ﬁ)

ad (X,) Unit norm eigenvectors (direction)

t 0.839
0.544

Eigenvalues (magnitude)

pop (X1) .
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Projection reduces dimension

* Projecting to the first principal component leads to
» z;; = 0.839 X (pop; — pop) + 0.544 x (ad; — ad)

* This projection 1s the most accurate projection of the data to one dimension

* The projected observations are as close as possible to the original observations
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[llustration

* [llustrating first principal component scores
* z;; = 0.839 X (pop; — pop) + 0.544 X (adi — ﬁ)

* The plots show a strong relationship between z;; and both pop; and
ad; features
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How to perform PCA IV

4. Select the second principal component (if necessary)

ad (X5) Unit norm eigenvectors (direction)
[ 0.839 0.544
<0.544> <—0.839>
Nyt
o > Eigenvalues (magnitude)
o ° pop (X1)
v, V
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Second principal component

* The second principal component Z5 is a linear combination of variables
that is orthogonal to first principal component Z4 and has largest
variance subject to being orthogonal

ad (X;) Unit norm eigenvectors (direction)
[ 0.839 0.544
0.544 <—0.839>
o
. 0 - > Eigenvalues (magnitude)
o ° pop (X1)
1
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Projection to second principal component

* [llustrating second principal component scores
* z;; = 0.544 X (pop; — pop) — 0.839 x (ad; — ad)

* The plots show a weak relationship between Z;, and the pop; and ad;
features
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Summarizing PCA

Small table
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