QTM 347 Machine Learning

Lecture 17: PCA

Ruoxuan Xiong

Suggested reading: ISL Chapter 6

Lecture plan

• Principal component analysis

Principal component analysis (PCA)

X_1	X_2	X_3	•••	•••	•••	X_p
*	*	*				*
*	*	*		• • •	• • •	*
*	*	*	•••	•••	•••	*
*	*	*			•••	*
*	*	*			•••	*
*	*	*	•••	•••	•••	*
*	*	*		•••	•••	*
*	*	*	•••	•••	•••	*
*	*	*		•••	•••	*
*	*	*		•••	•••	*
*	*	*	•••	•••	•••	*
*	*	*		• • •	•••	*

Use M features to summarize most of the information in the original p features

Reduce dimensionality (Principal component analysis)

Small table (M = 2)

Z_1	Z_2
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*

Reduce dimensionality (stock return data)

	AAPL	MSFT	AMZN	GOOG	NVDA	
20220103	*	*	*	*	*	
20220104	*	*	*	*	*	
20220105	*	*	*	*	*	
20220106	*	*	*	*	*	•••
20220107	*	*	*	*	*	•••
20220110	*	*	*	*	*	•••
20220111	*	*	*	*	*	•••
20220112	*	*	*	*	*	•••
	*	*	*	*	*	•••
	*	*	*	*	*	
	*	*	*	*	*	•••
•••	*	*	*	*	*	•••

Principal component analysis (PCA)

• Find M features, Z_1, Z_2, \dots, Z_M , that can "best represent" the original p features X_1, X_2, \dots, X_p

- $M \ll p$
- Reduce the dimensionality of X_1, X_2, \dots, X_p
- Unsupervised learning method

• Question: How should we select the *M* features?

Intuition

- When your "big data" is too big
- Suppose we are taking multiple pictures from different angles

Intuition

- Suppose we are taking multiple pictures from different angles
 - We have obtained data points from different angles
 - Which is the "important" direction?

• Principal component analysis finds this "important" direction

Example

- Five features (p = 5) in the Boston housing data
- Reduce them to M = 2 features

Size
Number of rooms
Number of bathrooms

School around
Crime rate

Size feature

Location feature

How to perform PCA I

1. Estimate the **covariance matrix** $\hat{\Sigma}$ of X_1, X_2, \dots, X_p

- $\hat{\Sigma}$ is a $p \times p$ matrix, the (i,j)-th entry being the covariance of X_i, X_j
- Example: population size (pop) and ad spending (ad) for 100 cities

How to perform PCA II

2. Calculate the **eigenvalues** and **eigenvectors** of the covariance

• Covariance matrix:
$$\hat{\Sigma} = \begin{bmatrix} 3.816 & 1.826 \\ 1.826 & 2.184 \end{bmatrix}$$

How to perform PCA III

3. Select the first principal component

Unit norm eigenvectors (direction)

$$\begin{pmatrix} \mathbf{0.839} \\ \mathbf{0.544} \end{pmatrix} \qquad \begin{pmatrix} 0.544 \\ -0.839 \end{pmatrix}$$

Eigenvalues (magnitude)

5

First principal component

• Geometric interpretation: $(\phi_{11}, \phi_{21}) = (0.839, 0.544)$ is the solution to

• Maximize
$$Var\left(\phi_{11} \times (pop_i - \overline{pop}) + \phi_{21} \times (ad_i - \overline{ad})\right)$$

• Subject to the constraint $\phi_{11}^2 + \phi_{21}^2 = 1$

Projection to first principal component

• First principal component, which is a line, corresponds to the following equation:

•
$$z_{i1} = 0.839 \times (pop_i - \overline{pop}) + 0.544 \times (ad_i - \overline{ad})$$

Projection reduces dimension

- Projecting to the first principal component leads to
 - $z_{i1} = 0.839 \times (pop_i \overline{pop}) + 0.544 \times (ad_i \overline{ad})$
- This projection is the most accurate projection of the data to one dimension
 - The projected observations are as close as possible to the original observations

Illustration

• Illustrating first principal component scores

•
$$z_{i1} = 0.839 \times (pop_i - \overline{pop}) + 0.544 \times (ad_i - \overline{ad})$$

• The plots show a **strong** relationship between z_{i1} and both pop_i and ad_i features

How to perform PCA IV

4. Select the second principal component (if necessary)

Second principal component

• The second principal component Z_2 is a linear combination of variables that is **orthogonal to** first principal component Z_1 and has **largest** variance subject to **being orthogonal**

Projection to second principal component

• Illustrating second principal component scores

•
$$z_{i2} = 0.544 \times (pop_i - \overline{pop}) - 0.839 \times (ad_i - \overline{ad})$$

• The plots show a **weak** relationship between z_{i2} and the **pop**_i and ad_i features

Summarizing PCA

