QTM 347 Machine Learning

Lecture 16: Boosting

Ruoxuan Xiong

Suggested reading: ISL Chapter 8 and 10

Lecture plan

• Gradient boosting

• AdaBoost

• XGBoost

Boosting (combine weak learners)

- Step 1: Set $\hat{f}(x) = 0$, and $r_i = y_i$ for $i = 1, \dots, n$.
- Step 2: For $b = 1, \dots, B$, iterate:
 - Fit a decision tree \hat{f}^b with d splits (d+1) terminal nodes) to the response r_1, \cdots, r_n
 - Update the prediction to

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$

• Update the residuals

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i)$$

• Step 3: Output the final model

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x)$$

Boosting

$$\hat{f}(x) = \lambda \hat{f}^{1}(x) + \lambda \hat{f}^{2}(x) + \lambda \hat{f}^{3}(x) + \dots + \lambda \hat{f}^{B}(x)$$

- A particular method of training a boosted classifier
- For example, $Y \in \{-1,1\}$ is binary

Initial weight

<i>X</i> ₁	<i>Y</i> ₁	1/5
X_2	Y_2	1/5
X_3	<i>Y</i> ₃	1/5
X_4	Y_4	1/5
<i>X</i> ₅	<i>Y</i> ₅	1/5

Fitted tree $\hat{f}^1(x)$ Correctly predict all samples besides Y_3 and Y_5

$$Total\ Error = \frac{1}{n} \sum_{i} I(\hat{f}(X_i) \neq Y_i) = \frac{2}{5}$$

Amount of stay =
$$\frac{1}{2} \log \frac{1 - Total Error}{Total Error} = \frac{1}{2} \log \frac{1 - 2/5}{2/5} = 0.088$$

Next we *increase* the sample weight for the sample that was incorrectly classified. We *decrease* the sample weight for the sample that was correctly classified.

- A particular method of training a boosted classifier
- For example, $Y \in \{-1,1\}$ is binary

Initial weight

X_1	<i>Y</i> ₁	1/5
X_2	Y_2	1/5
X_3	<i>Y</i> ₃	1/5
X_4	Y_4	1/5
<i>X</i> ₅	<i>Y</i> ₅	1/5

Fitted tree $\hat{f}^1(x)$ Correctly predict all samples besides Y_3 and Y_5

Amount of stay =
$$\frac{1}{2} \log \frac{1 - Total Error}{Total Error} = \frac{1}{2} \log \frac{1 - 2/5}{2/5} = 0.088$$

Next we *increase* the sample weight for the sample that was incorrectly classified

New sample weight = sample weight
$$\times \exp(Amount\ of\ stay)$$

New sample weight = $\frac{1}{5} \times \exp(Amount\ of\ stay) = 0.2184$

We *decrease* the sample weight for the sample that was correctly classified

New sample weight = sample weight
$$\times \exp(-Amount\ of\ stay)$$

New sample weight = $\frac{1}{5} \times \exp(-Amount\ of\ stay) = 0.1831$

- A particular method of training a boosted classifier
- For example, $Y \in \{-1,1\}$ is binary

		Initial weig	ht			New weight
X_1	<i>Y</i> ₁	1/5		X_1	<i>Y</i> ₁	0.1831
X_2	Y_2	1/5	Update weight	X_2	Y_2	0.1831
X_3	<i>Y</i> ₃	1/5		X_3	<i>Y</i> ₃	0.2184
X_4	Y_4	1/5		X_4	Y_4	0.1831
<i>X</i> ₅	<i>Y</i> ₅	1/5		<i>X</i> ₅	<i>Y</i> ₅	0.2184

Fitted tree $\hat{f}^1(x)$ Correctly predict all samples besides Y_3 and Y_5

Sum of the weights = $0.9862 \neq 1$

- A particular method of training a boosted classifier
- For example, $Y \in \{-1,1\}$ is binary

Initial weight

X_1	Y_1	1/5	
X_2	Y_2	1/5	Update weight
<i>X</i> ₃	<i>Y</i> ₃	1/5	
X_4	Y_4	1/5	
<i>X</i> ₅	<i>Y</i> ₅	1/5	

Fitted tree $\hat{f}^1(x)$

Correctly predict all

samples besides Y_3 and Y_5

3 T	
New	weight
	0 -

<i>X</i> ₁	<i>Y</i> ₁	0.1831/0.9862
X_2	Y_2	0.1831/0.9862
<i>X</i> ₃	Y_3	0.2184/0.9862
X_4	Y_4	0.1831/0.9862
<i>X</i> ₅	<i>Y</i> ₅	0.2184/0.9862

Fitted tree $\hat{f}^2(x)$

$$\hat{f}(x) = Sign\left(\sum_{b=1}^{B} \lambda_b \hat{f}^b(x)\right)$$

Predict the most likely class

XGBoost

- **XGBoost** (eXtreme Gradient Boosting) is an open-source software library that provides a *regularized* gradient-boosting framework
- Objective function is

$$obj(\theta) = L(\theta) + \Omega(\theta)$$

- $L = \sum_{i} l(Y_i, \hat{Y}_i)$ is the training loss function
 - Regression problem: $l(Y_i, \hat{Y}_i) = (Y_i \hat{Y}_i)^2$
 - Classification problem: L can be the logistic loss

XGBoost

- **XGBoost** (eXtreme Gradient Boosting) is an open-source software library that provides a *regularized* gradient-boosting framework
- Objective function is

$$obj(\theta) = L(\theta) + \Omega(\theta)$$

- $\Omega = \sum_b \omega(f^b)$ is the regularization term
 - $\omega(f) = \gamma T + \frac{1}{2} \zeta \sum_{j=1}^{T} w_j^2$ where $f^b(x) = w_{q(x)}$, and q is a function assigning each data point to the corresponding leaf

Additive training

- Parameters θ of trees: structure of the tree and leaf predicted values
- Let the prediction value at step t be $\hat{Y}_i^{(t)}$. Then we have (ignore λ)
 - $\bullet \ \widehat{Y}_i^{(0)} = 0$
 - $\hat{Y}_i^{(1)} = \hat{Y}_i^{(0)} + f^1(X_i) = f^1(X_i)$
 - $\hat{Y}_i^{(2)} = \hat{Y}_i^{(1)} + f^2(X_i) = f^1(X_i) + f^2(X_i)$
 - ...
 - $\hat{Y}_i^{(t)} = \hat{Y}_i^{(t-1)} + f^t(X_i) = \sum_{b=1}^t f^b(X_i)$
- XGBoost provides an approach to obtain $f^t(X_i)$ that can reduce $obj(\theta)$

Taylor expansion of the objective function

• Objective function at step t

$$obj^{(t)} = \sum_{i=1}^{n} l(Y_i, \hat{Y}_i^{(t)}) + \sum_{b=1}^{t} \omega(f^b)$$

= $\sum_{i=1}^{n} l(Y_i, \hat{Y}_i^{(t-1)}) + f^t(X_i) + \sum_{b=1}^{t} \omega(f^b)$

• We take the Taylor expansion of the loss function to the second order

$$l(Y_i, \hat{Y}_i^{(t-1)} + f^t(X_i)) = l(Y_i, \hat{Y}_i^{(t-1)}) + g_i f^t(X_i) + \frac{1}{2} h_i [f^t(X_i)]^2$$

- g_i and h_i are the first-order and second-order derivatives of $l(Y_i, \hat{Y}_i^{(t-1)})$ w.r.t. $\hat{Y}_i^{(t-1)}$
- Treat $l\left(Y_i, \widehat{Y}_i^{(t-1)}\right)$ as a constant term
- Example (MSE loss)

$$\left(Y_i - (\hat{Y}_i^{(t-1)} + f^t(X_i)) \right)^2 = \left(Y_i - \hat{Y}_i^{(t-1)} \right)^2 + 2 \left(\hat{Y}_i^{(t-1)} - Y_i \right) f^t(X_i) + [f^t(X_i)]^2$$
• $g_i = 2 \left(\hat{Y}_i^{(t-1)} - Y_i \right)$ and $h_i = 2$

The structure score

• Objective function at step t

$$obj^{(t)} = \sum_{i=1}^{n} l\left(Y_{i}, \hat{Y}_{i}^{(t)}\right) + \sum_{b=1}^{t} \omega(f^{b})$$

$$= \sum_{i=1}^{n} \left[g_{i}f^{t}(X_{i}) + \frac{1}{2}h_{i}[f^{t}(X_{i})]^{2}\right] + \gamma T + \frac{1}{2}\zeta \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{i=1}^{n} \left[g_{i}w_{q(X_{i})} + \frac{1}{2}h_{i}[w_{q(X_{i})}]^{2}\right] + \gamma T + \frac{1}{2}\zeta \sum_{j=1}^{T} w_{j}^{2} \qquad \text{Replace } f^{t}(X_{i}) \text{ by } w_{q(X_{i})}$$

$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_{j}} g_{i}\right) w_{j} + \frac{1}{2}\left(\sum_{i \in I_{j}} h_{i} + \zeta\right) \left[w_{j}\right]^{2}\right] + \lambda T \qquad \text{Change the sum by leaves}$$

$$= \sum_{j=1}^{T} \left[G_{i}w_{j} + \frac{1}{2}(H_{i} + \zeta)[w_{j}]^{2}\right] + \lambda T$$

• The best w_j to minimize $obj^{(t)}$ is given by $w_j^* = -\frac{G_i}{H_i + \zeta}$

