QTM 347 Machine Learning

Lecture 13: Decision tree and bagging

Ruoxuan Xiong

Suggested reading: ISL Chapter 8

Regression tree

- Two main steps in constructing regression trees
 - 1. Partition the feature space into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J
 - 2. Make the **same** prediction for every observation in region R_j : Mean of the training observations in R_j
- Tree pruning to avoid overfitting, e.g., use cost complexity pruning
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \widehat{Y}_{R_j} \right)^2 + \alpha |T|$$

Incorrect variation of cross-validation to select α

- Cross-validation: Split the training observations into 10 folds
 - For a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees are T_1, T_2, \dots, T_m
 - Tree structures are fixed in the cross validation
 - For $k = 1, \dots, 10$, using every fold except the kth
 - Make prediction for each region in each tree T_i
 - Prediction for each region vary with the hold-out fold *k*
 - For each tree T_i , calculate the RSS on the hold-out fold k
 - Select the optimal tree T_i that minimizes the average error across 10 folds

Correct variation of cross-validation to select α

- Cross-validation: Split the training observations into K folds
 - Hold out the kth fold, for a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees are $T_1^{(k)}, T_2^{(k)}, \dots, T_m^{(k)}$
 - The sequence of trees vary with which fold is held out
 - Use tree $T_i^{(k)}$ to make prediction and calculate RSS on the hold-out fold k
 - Select the optimal parameter α that minimizes the average error across ten folds

Classification tree

• Classification trees work much like regression trees. Instead,

• In step 1, minimize the classification error rate (rather than RSS)

• In step 2, predict the response by majority vote, i.e. pick the most common class in every region

Classification losses: The 0–1 loss

• The 0-1 loss or misclassification rate in region m:

$$\sum_{i \in R_m} 1(Y_i \neq \widehat{Y}_{R_m})$$

- Example:

 - $\widehat{Y}_{R_m} = \text{red}$ $\sum_{i \in R_m} 1(Y_i \neq \widehat{Y}_{R_m}) = 4$

Region *m*

Classification losses: Gini index

• The Gini index in region *m*

$$G_m = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

• p_{mk} : proportion of training observations in the mth region that are from kth class

- Example:
 - $\hat{p}_{m,\text{red}} = \frac{6}{10} = 0.6$ $\hat{p}_{m,\text{green}} = \frac{4}{10} = 0.4$

 - $G_m = 0.6(1 0.6) + 0.4(1 0.4) = 0.48$

Region *m*

Classification losses: Gini index

• The Gini index in region *m*

$$G_m = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- p_{mk} : proportion of training observations in the mth region that are from kth class
- Example:

•
$$\hat{p}_{m,\text{red}} = \frac{9}{10} = 0.9$$

•
$$\hat{p}_{m,\text{red}} = \frac{9}{10} = 0.9$$

• $\hat{p}_{m,\text{green}} = \frac{1}{10} = 0.1$

•
$$G_m = 0.9(1 - 0.9) + 0.1(1 - 0.1) = 0.18$$

- G_m is a measure of node purity
 - G_m is small if all \hat{p}_{mk} 's are close to zero or one

Region *m*

Classification losses: Entropy

• The entropy in region *m*

$$D_m = -\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$$

• p_{mk} : proportion of training observations in the mth region that are

from kth class

- Example:

 - $\hat{p}_{m,\text{red}} = \frac{6}{10} = 0.6$ $\hat{p}_{m,\text{green}} = \frac{4}{10} = 0.4$
 - $D_m = -0.6 \log 0.6 0.4 \log 0.4 = 0.673$

Region *m*

Classification losses: Entropy

• The entropy in region *m*

$$D_m = -\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$$

- p_{mk} : proportion of training observations in the mth region that are from kth class
- Example:

•
$$\hat{p}_{m,\text{red}} = \frac{9}{10} = 0.9$$

•
$$\hat{p}_{m,\text{red}} = \frac{9}{10} = 0.9$$

• $\hat{p}_{m,\text{green}} = \frac{1}{10} = 0.1$

- $D_m = -0.9 \log 0.9 0.1 \log 0.1 = 0.461$
- D_m is another measure of purity
 - D_m is small if all \hat{p}_{mk} 's are close to zero or one

Region *m*

Classification losses

• The 0–1 loss or misclassification rate in region m (prune tree)

$$\sum_{i \in R_m} 1(Y_i \neq \widehat{Y}_{R_m})$$

• The Gini index in region m (evaluate the quality of a split)

$$G_m = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

• The entropy in region m (evaluate the quality of a split)

$$D_m = -\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$$

- Predict whether a patient with chest pain has heart disease based on Age, Sex, Chol (a cholesterol measure), and other heart and lung function measures
- Some predictors are qualitative
 - Thal (Thallium stress test)
 - ChestPain
 - Sex

- Predict whether a patient with chest pain has heart disease based on Age, Sex, Chol (a cholesterol measure), and other heart and lung function measures
- Some predictors are qualitative
 - Thal (Thallium stress test)
 - ChestPain
 - Sex

- Predict whether a patient with chest pain has heart disease based on Age, Sex, Chol (a cholesterol measure), and other heart and lung function measures
- Some terminal nodes have the same predicted value
 - Reason: Increased node purity
- Example

 - RestECG ≥ 1: ⁹/₉ with Yes
 RestECG < 1: ⁷/₁₁ with Yes

- Predict whether a patient with chest pain has heart disease based on Age, Sex, Chol (a cholesterol measure), and other heart and lung function measures
- Cross validation to prune tree

- Predict whether a patient with chest pain has heart disease based on Age, Sex, Chol (a cholesterol measure), and other heart and lung function measures
- Pruned tree after cross-validation:

