QTM 347 Machine Learning

Lecture 10: Subset selection and regularization

Ruoxuan Xiong

Suggested reading: ISL. Chapter 6




Lecture plan

e Subset selection

* Ridge regression
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Subset selection

* Step 1: For each k, select a subset of k predictors from the total p
predictors

* There are (i) == (5_ o) possible ways of choosing k predictors

* Choose the subset with the smallest residual sum of squares (denoted by the red

dots in the curve)

» Step 2: Use AIC, BIC or adjusted R* to select optimal k
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Stepwise selection methods

* Forward stepwise selection

* Start with a model with no predictors

* Add predictors to the model one-at-a-time

* Backward stepwise selection
* Start with a model with p predictors

e Remove the least useful predictor one-at-a-time
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Forward stepwise selection

* Step 1: No predictors (fit one model)
* Step 2: Select the best model with one predictor (fit p models)

* Step 3: Given the model with one predictor, select the best model with two
predictors (fit p — 1 models)

* Step 4: Given the model with two predictors, select the best model with three
predictors (fit p — 2 models)

* In each step, best is defined as having smallest RSS/MSE or highest R?

* Select a single best model with the optimal number of predictors using cross-
validated predictor error, AIC, BIC or adjusted R?




Number of model fits in forward selection

* Step 1: No predictors (fit one model)
* Step 2: Select the best model with one predictor (fit p models)

* Step 3: Given the model with one predictor, select the best model with two
predictors (fit p — 1 models)

* Step 4: Given the model with two predictors, select the best model with three
predictors (fit p — 2 models)

pp+1) models in total

*Fitl+p+(p—-D++1=1+3"(p—k) =1+

p

* Much fewer than Zi: 0 ( I
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Forward vs. best subset selection

* Forward stepwise selection may fail to select the best possible k-variable model

* Forward stepwise selection is applicable to high-dimensional settings (p > n)

# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income rating, income,
student, 1imit student, 1limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.
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Backward stepwise selection

* Step 1: All predictors (fit one model)
* Step 2: Select the best model with p — 1 predictors (fit p models)

* Step 3: Given the model with p — 1 predictors, select the best model with p — 2
predictors (fit p — 1 models)

* Step 4: Given the model with p — 2 predictors, select the best model with p — 3
predictors (fit p — 2 models)

* In each step, best is defined as having smallest RSS/MSE or highest R?

* Select a single best model with the optimal number of predictors using cross-
validated predictor error, AIC, BIC or adjusted R?




Number of model fits in backward selection

* Step 1: All predictors (fit one model)
* Step 2: Select the best model with p — 1 predictors (fit p models)

* Step 3: Given the model with p — 1 predictors, select the best model with p — 2
predictors (fit p — 1 models)

* Step 4: Given the model with p — 2 predictors, select the best model with p — 3
predictors (fit p — 2 models)

pp+1) models in total

*Fitl+p+(@—-1D+-+1=1+3"(p—k)=1+

2

* Much fewer than 22:0 ( I

) — 2P in best subset selection
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Forward vs. backward selection

* You cannot apply backward selection when p > n

* Although it seems like they should, they need not produce the same
sequence of models

o Example. X1, X,~N (0, 0%) independent

X3=X1+3X2
Y=X1+2X2+E

* Regress Y on X, X5, X3
* Forward: {X3} — {X3,X2} — {Xg,Xz,Xl}

e Backward: {XllXZ ,X3} — {Xl,Xz} — {Xz}




Lecture plan

* Ridge regression
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Motivation

Y = Xlﬁl + Xzﬁz + o+ Xp:Bp + &€
* The number of predictorsp > n

* We have more parameters than observations

* How can we estimate 31, 7, ***, Bp?




Example

* Predict Boston house price

* Suppose we only have one observation (n = 1)

crim zn indus chas nox rm age dis rad tax ptratio Istat medv

45.7461 O 18.1 0 0.693 4.519 100 1.6582 24 666 20.2 36.98 7

* But we want to estimate the coefficients in the linear model (p = 2)

medv = [y + Istat - f1 + ¢

* How can we use one observation to estimate 3y, 17
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If we have one more observation...

* Predict Boston house price

* Suppose we only have two observations (n = 2)

crim zn indus chas nox rm age dis rad tax ptratio Istat medv
0.28955 0 10.59 0 0.489 5.412 9.8 3.5875 4 277 18.6 29.55 23.7
45.74610 0 18.10 0 0.693 4.519 100.0 1.6582 24 666 20.2 36.98 7.0

* Let us consider a simpler linear model (p = 2)

medv = [y + Istat - f1 + ¢

* We can estimate [y and 4




Example
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* We still have a problem: The fitted curve is very sensitive to the medv of
these two observations
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Example

* If one of the two observations changes, we can a very different fitted curve

* The linear model overfits, and has a high vatiance. ..
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Ridge regression
* Find a new line that does not fit the training data as well

* In other words, we introduce a small amount of bias into how the new
line is fit to the data ¢

(s2]

(29155,23.7)

medv
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Ridge regression
e We introduce a small amount of bias into how the new line is fit to the data

* But in turn for that small amount of bias, we get a significant drop in
variance

o
(89}
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Fitting ridge regression

* Linear regression minimizes residual sum of squares

* RSS = Y1 (medv; — By — Istat; - $1)?

* Ridge regression minimizes
v (medv; — By — Istat; - B)* + 1 - B

* 4 = 0: tuning hyper-parameter
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Objective value of least squares solution

* Suppose 4 = 10
* Linear regression fit: medv = 90.118 — 2.248 - Istat

o
(s0]

A

. B, = —2.248

« Y (medv; — By — Istat; - Bl)z + 1 B2
=0+ 10-2.248% = 50.535

medv
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Objective value of ridge regression solution

* Suppose 4 = 10
* Ridge regression fit: medv = 70.234 — 1.650 - [stat

o
(s0]

« fR = —1.650

. Ay 2 A D 2
« Y (medv; — By — Istat; - fF)" + 1 - (BF) i
= 4931+ 4931+ 10-1.650% = 37.084
< 50.535
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Ridge regression is less sensitive to [stat

* Linear regression fit: medv = 90.118 —
2.248 - [stat

30

* One unit change in [stat results in —2.248
units change in medv

medv

* Ridge regression fit: medv = 70.234 —
1.650 - Istat

* One unit change in [stat results in —1.650 ©

units change in medv ' ' ' | | .

Istat



Role of A in ridge regression

* Ridge regression minimizes
° ?:1(medvl — ﬁo - lStCltl * ﬁl)z + A . ﬁ% lambda =5

o
(89}

medv
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Role of A in ridge regression

* Ridge regression minimizes
¢ Y (medv; — Bo — Istat; - )2 + 1 - 7
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Role of A in ridge regression

* Ridge regression minimizes
¢ Y (medv; — Bo — Istat; - )2 + 1 - 7
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Role of A in ridge regression

* Ridge regression minimizes
« YiLi(medv; — By — Istat; - f1)* + A Bf
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Our prediction becomes less sensitive to Istat as A increases

* Ridge regression minimizes
« YiLi(medv; — By — Istat; - f1)* + A Bf

* How to choose the optimal A?

lambda =5 lambda =10 lambda = 10000
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Choose A by cross-validation

1. Choose a grid of A values
2. Compute the cross-validation error for each A value
3. Select the A with the smallest cross-validation error

4. Refit the model using all observations and selected 4




Ridge regression for more than one predictor

* Ridge regression minimizes
2
?:1(1/1' _ IBO _ 2?:1 ,Bin,j) + AZ?:l ,8]'2

* X; j: J-th predictor of i-th observation
* |IB1I5 = 25;1,3]-2: S|, is called the £, norm of f € RP

* [o: mean of Y;

* Shrinkage penalty 4 does not apply to Bq




Example: Credit card data set (ridge regression)

* Cross validation to choose the optimal A
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Quiz: Which is the ridge regression fit?
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* Suppose we only have one observation (n = 1)

age dis

100 1.6582
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