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Suggested reading: ISL Chapter 6

QTM 347 Machine Learning

Lecture 10: Subset selection and regularization



Lecture plan
• Subset selection

• Ridge regression
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Subset selection 
• Step 1: For each 𝑘, select a subset of  𝑘 predictors from the total 𝑝 

predictors

• There are 
𝑝
𝑘 = !!

#! !$# ! possible ways of  choosing 𝑘 predictors

• Choose the subset with the smallest residual sum of  squares (denoted by the red 
dots in the curve)

• Step 2: Use AIC, BIC or adjusted 𝑅! to select optimal 𝑘

• Choose a dot in the red curve
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Stepwise selection methods
• Forward stepwise selection
• Start with a model with no predictors

• Add predictors to the model one-at-a-time

• Backward stepwise selection
• Start with a model with 𝑝 predictors

• Remove the least useful predictor one-at-a-time

2/25/25



Forward stepwise selection
• Step 1: No predictors (fit one model)

• Step 2: Select the best model with one predictor (fit 𝑝 models)

• Step 3: Given the model with one predictor, select the best model with two 
predictors (fit 𝑝 − 1 models)

• Step 4: Given the model with two predictors, select the best model with three 
predictors (fit 𝑝 − 2 models)
• …
• In each step, best is defined as having smallest RSS/MSE or highest 𝑅%

• Select a single best model with the optimal number of  predictors using cross-
validated predictor error, AIC, BIC or adjusted 𝑅%
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Number of  model fits in forward selection
• Step 1: No predictors (fit one model)

• Step 2: Select the best model with one predictor (fit 𝑝 models)

• Step 3: Given the model with one predictor, select the best model with two 
predictors (fit 𝑝 − 1 models)

• Step 4: Given the model with two predictors, select the best model with three 
predictors (fit 𝑝 − 2 models)
• …
• Fit 1 + 𝑝 + 𝑝 − 1 +⋯+ 1 = 1 + ∑#&'

!$( 𝑝 − 𝑘 = 1 + ! !)(
%  models in total

• Much fewer than ∑#&'
! 𝑝

𝑘 = 2!	in best subset selection
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Forward vs. best subset selection
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• Forward stepwise selection may fail to select the best possible 𝑘-variable model
• Forward stepwise selection is applicable to high-dimensional settings (𝑝 > 𝑛)



Backward stepwise selection
• Step 1: All predictors (fit one model)

• Step 2: Select the best model with 𝑝 − 1 predictors (fit 𝑝 models)

• Step 3: Given the model with 𝑝 − 1 predictors, select the best model with 𝑝 − 2 
predictors (fit 𝑝 − 1 models)

• Step 4: Given the model with 𝑝 − 2 predictors, select the best model with 𝑝 − 3 
predictors (fit 𝑝 − 2 models)
• …
• In each step, best is defined as having smallest RSS/MSE or highest 𝑅%

• Select a single best model with the optimal number of  predictors using cross-
validated predictor error, AIC, BIC or adjusted 𝑅%
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Number of  model fits in backward selection
• Step 1: All predictors (fit one model)

• Step 2: Select the best model with 𝑝 − 1 predictors (fit 𝑝 models)

• Step 3: Given the model with 𝑝 − 1 predictors, select the best model with 𝑝 − 2 
predictors (fit 𝑝 − 1 models)

• Step 4: Given the model with 𝑝 − 2 predictors, select the best model with 𝑝 − 3 
predictors (fit 𝑝 − 2 models)
• …
• Fit 1 + 𝑝 + 𝑝 − 1 +⋯+ 1 = 1 + ∑#&'

!$( 𝑝 − 𝑘 = 1 + ! !)(
%

 models in total

• Much fewer than ∑#&'
! 𝑝

𝑘 = 2!	in best subset selection
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Forward vs. backward selection 
• You cannot apply backward selection when 𝑝 > 𝑛

• Although it seems like they should, they need not produce the same 
sequence of  models

• Example. 𝑋", 𝑋!~𝑁 0, 𝜎!  independent

𝑋* = 𝑋( + 3𝑋%
𝑌 = 𝑋( + 2𝑋% + 𝜖

• Regress 𝑌 on 𝑋", 𝑋!, 𝑋#
• Forward: {𝑋#} → {𝑋#, 𝑋!} → {𝑋#, 𝑋!, 𝑋"}

• Backward: {𝑋", 𝑋! , 𝑋#} → {𝑋", 𝑋!} → {𝑋!}
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Lecture plan
• Subset selection

• Ridge regression

2/25/25



Motivation

𝑌 = 𝑋(𝛽( + 𝑋%𝛽% +⋯+ 𝑋!𝛽! + 𝜀

• The number of  predictors 𝑝 > 𝑛 

• We have more parameters than observations

• How can we estimate 𝛽", 𝛽!, ⋯, 𝛽$?
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Example
• Predict Boston house price

• Suppose we only have one observation (𝑛 = 1)

• But we want to estimate the coefficients in the linear model (𝑝 = 2)

𝑚𝑒𝑑𝑣 = 𝛽' + 𝑙𝑠𝑡𝑎𝑡 ⋅ 𝛽( + 𝜀

• How can we use one observation to estimate 𝛽%, 𝛽"?
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Which 𝛽! and 𝛽" should we choose?
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If  we have one more observation…
• Predict Boston house price

• Suppose we only have two observations (𝑛 = 2)

• Let us consider a simpler linear model (𝑝 = 2)

𝑚𝑒𝑑𝑣 = 𝛽' + 𝑙𝑠𝑡𝑎𝑡 ⋅ 𝛽( + 𝜀

• We can estimate 𝛽% and 𝛽"
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Example
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• We still have a problem: The fitted curve is very sensitive to the 𝑚𝑒𝑑𝑣 of  
these two observations



Example
• If  one of  the two observations changes, we can a very different fitted curve
• The linear model overfits, and has a high variance…
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Ridge regression
• Find a new line that does not fit the training data as well
• In other words, we introduce a small amount of  bias into how the new 

line is fit to the data 
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Ridge regression
• We introduce a small amount of  bias into how the new line is fit to the data 
• But in turn for that small amount of  bias, we get a significant drop in 

variance 
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Fitting ridge regression
• Linear regression minimizes residual sum of  squares
• 𝑅𝑆𝑆 = ∑+&(, 𝑚𝑒𝑑𝑣+ − 𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ 𝛽( %

• Ridge regression minimizes 
• ∑+&(, 𝑚𝑒𝑑𝑣+ − 𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ 𝛽( % + 𝜆 ⋅ 𝛽(%

• 𝜆 ≥ 0:  tuning hyper-parameter
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Objective value of  least squares solution
• Suppose 𝜆 = 10
• Linear regression fit: :𝑚𝑒𝑑𝑣 = 90.118 − 2.248 ⋅ 𝑙𝑠𝑡𝑎𝑡

• @𝛽( = −2.248

• ∑+&(, 𝑚𝑒𝑑𝑣+ − @𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ @𝛽(
%
+ 𝜆 ⋅ @𝛽(%

 = 0 + 10 ⋅ 2.248% = 50.535
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Objective value of  ridge regression solution
• Suppose 𝜆 = 10
• Ridge regression fit: :𝑚𝑒𝑑𝑣 = 70.234 − 1.650 ⋅ 𝑙𝑠𝑡𝑎𝑡

• @𝛽(- = −1.650

• ∑+&(, 𝑚𝑒𝑑𝑣+ − @𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ @𝛽(-
%
+ 𝜆 ⋅ @𝛽(-

%

 = 4.931 + 4.931 + 10 ⋅ 1.650% = 37.084
 < 50.535
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Ridge regression is less sensitive to 𝑙𝑠𝑡𝑎𝑡 
• Linear regression fit: :𝑚𝑒𝑑𝑣 = 90.118 −
2.248 ⋅ 𝑙𝑠𝑡𝑎𝑡

• One unit change in 𝑙𝑠𝑡𝑎𝑡 results in −2.248 
units change in 𝑚𝑒𝑑𝑣

• Ridge regression fit: :𝑚𝑒𝑑𝑣 = 70.234 −
1.650 ⋅ 𝑙𝑠𝑡𝑎𝑡

• One unit change in 𝑙𝑠𝑡𝑎𝑡 results in −1.650 
units change in 𝑚𝑒𝑑𝑣
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Role of  𝜆 in ridge regression
• Ridge regression minimizes 
• ∑+&(, 𝑚𝑒𝑑𝑣+ − 𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ 𝛽( % + 𝜆 ⋅ 𝛽(%
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Role of  𝜆 in ridge regression
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Role of  𝜆 in ridge regression
• Ridge regression minimizes 
• ∑+&(, 𝑚𝑒𝑑𝑣+ − 𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ 𝛽( % + 𝜆 ⋅ 𝛽(%
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Our prediction becomes less sensitive to 𝑙𝑠𝑡𝑎𝑡 as 𝜆 increases 
• Ridge regression minimizes 
• ∑+&(, 𝑚𝑒𝑑𝑣+ − 𝛽' − 𝑙𝑠𝑡𝑎𝑡+ ⋅ 𝛽( % + 𝜆 ⋅ 𝛽(%

• How to choose the optimal 𝜆?
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Choose 𝜆 by cross-validation 

1. Choose a grid of  𝜆 values

2. Compute the cross-validation error for each 𝜆 value

3. Select the 𝜆 with the smallest cross-validation error

4. Refit the model using all observations and selected 𝜆

2/25/25



Ridge regression for more than one predictor
• Ridge regression minimizes 

 ∑+&(, 𝑌+ − 𝛽' − ∑.&(
! 𝛽.𝑋+,.

%
+ 𝜆∑.&(

! 𝛽.%

• 𝑋!,#: 𝑗-th predictor of  𝑖-th observation

• 𝛽 $
$ = ∑#%&

' 𝛽#$: 𝛽 $ is called the ℓ$ norm of  𝛽 ∈ ℝ'

• 𝛽!: mean of  𝑌"

• Shrinkage penalty 𝜆 does not apply to 𝛽'
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Example: Credit card data set (ridge regression)
• Cross validation to choose the optimal 𝜆
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Quiz: Which is the ridge regression fit?
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• Suppose we only have one observation (𝑛 = 1)


