#### QTM 347 Machine Learning

#### Lecture 7: Cross-Validation and Bootstrap

Ruoxuan Xiong Suggested reading: ISL Chapter 5



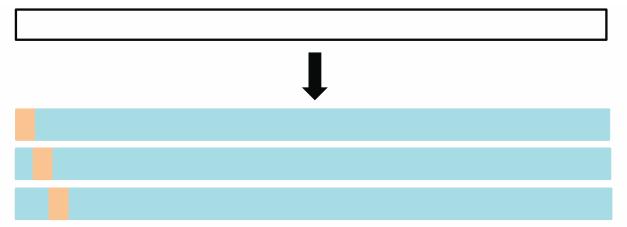
Lecture plan

- Cross validation
- Bootstrap



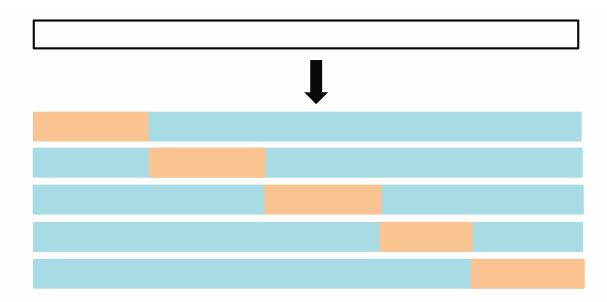
#### Leave one out cross-validation

- Leave one out cross-validation (split the data into *n folds*)
- For every  $i = 1, \cdots, n$ ,
  - Train the model on every point except i
  - Compute the test error on the hold-out point
  - Average over all *n* points

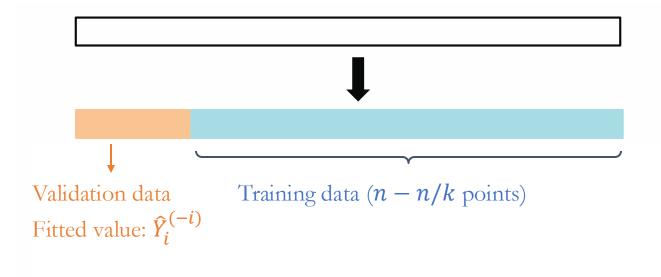




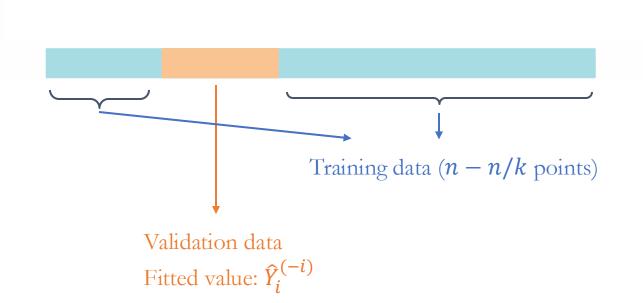
- Split the data into k subsets or *folds*
- For every  $i = 1, \dots, k$ :
  - Train the model on every fold except the *i*th fold
  - Compute the test error on the *i*th fold
  - Average the test errors



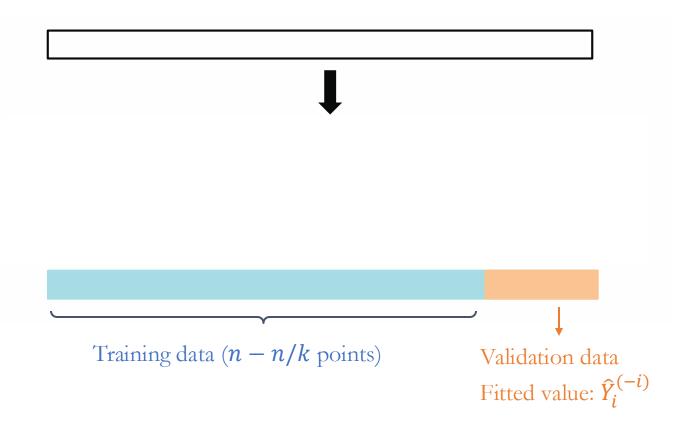


















## Cross-validation error

- Regression with mean squared loss
  - $\hat{Y}_i^{(-i)}$ : Prediction for the *i*th sample without using the *i*th sample

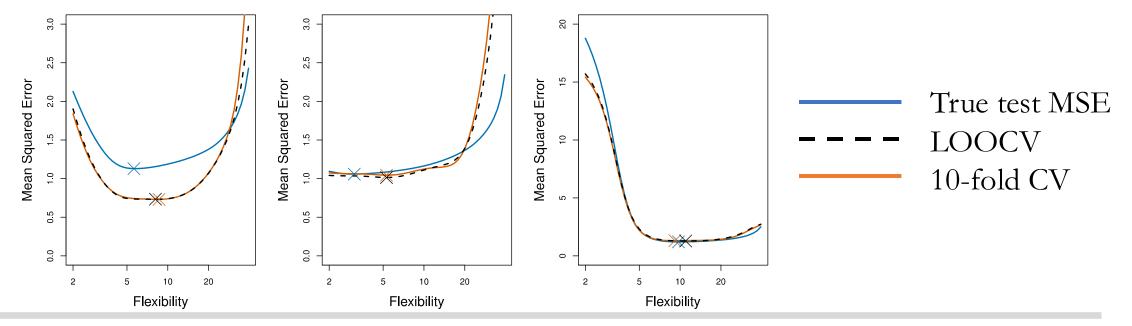
• 
$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i^{(-i)})^2$$

- Classification with zero-one loss
  - $\hat{Y}_{i}^{(-i)}$ : Prediction for the *i*th sample without using the *i*th sample

• 
$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} 1 \left[ Y_i \neq \hat{Y}_i^{(-i)} \right]$$



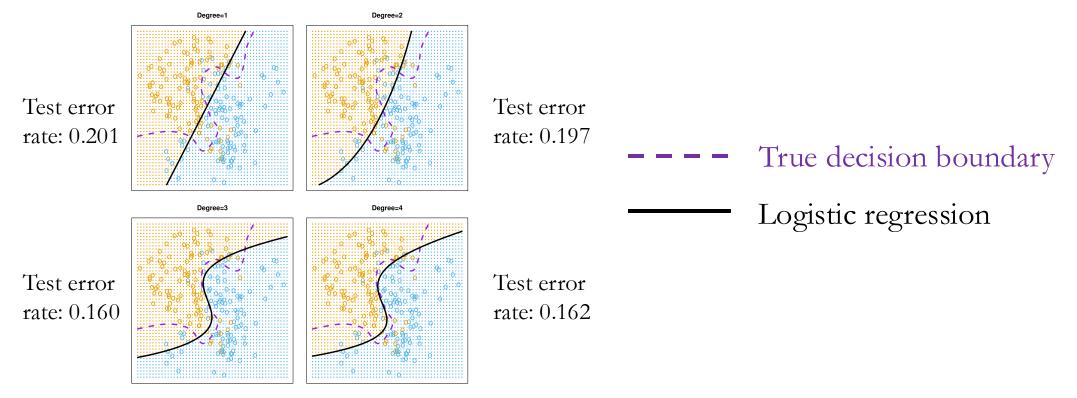
- In some cases, we are only interested in the location of the minimum point in the tested test MSE curve
- Rule of thumb: The model with the minimum CV error often has the lowest test error
- Example: Regression with simulated data





- Example: Classification with simulated data
  - Logistic regression with polynomial features

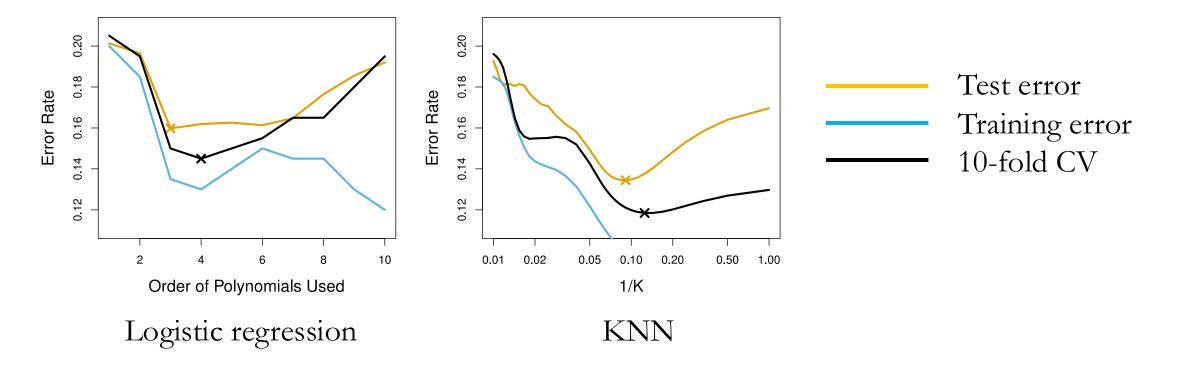
• 
$$\log\left[\frac{p}{1-p}\right] = \beta_0 + \beta_{1,1}X_1 + \dots + \beta_{1,q}X_1^q + \beta_{2,1}X_2 + \dots + \beta_{2,q}X_2^q$$





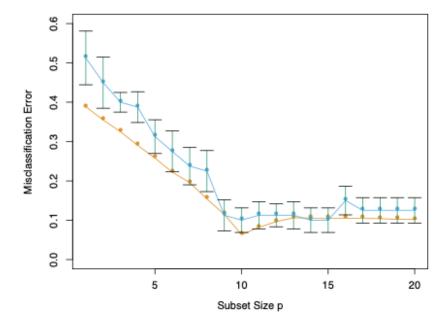
- Example: Classification with simulated data
  - Logistic regression with polynomial features

• 
$$\log\left[\frac{p}{1-p}\right] = \beta_0 + \beta_{1,1}X_1 + \dots + \beta_{1,q}X_1^q + \beta_{2,1}X_2 + \dots + \beta_{2,q}X_2^q$$





- Example
  - A few models with have the same CV error
  - The vertical bars represent one standard error in the test error from the 10 folds



Blue: 10-fold cross validation Yellow: True test error

• Rule of thumb: Choose the simplest model whose CV error is less than one standard error above the model with the lowest CV error



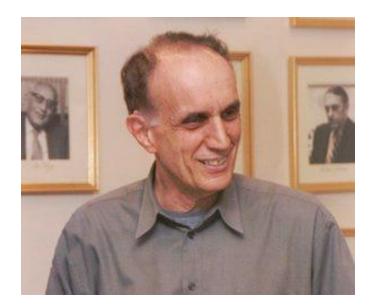
Lecture plan

- Cross validation
- Bootstrap



## Cross-validation vs. Bootstrap

- Cross-validation: Provide the test error with an independent validation set
- Bootstrap: Provide the standard error of model estimates
  - One of the most important techniques in all of Statistics
  - Computationally intensive
  - Popularized by Brad Efron (Stanford)





#### Standard errors

- **Definition:** Standard error is the standard deviation of an estimate from a sample set of size *n* 
  - Example: linear regression

| Min         | 10 Median     | 1 3Q       | Max     |          |     |
|-------------|---------------|------------|---------|----------|-----|
| -15.594 -2  | .730 -0.518   | 3 1.777 2  | 26.199  |          |     |
| Coefficient | B:            |            | 1       |          |     |
|             | Estimate      | Std. Error | t value | Pr(> t ) |     |
| (Intercept) | 3.646e+01     | 5.103e+00  | 7.144   | 3.28e-12 | *** |
| crim        | -1.080 e - 01 | 3.286e-02  | -3.287  | 0.001087 | **  |
| zn          | 4.642e-02     | 1.373e-02  | 3.382   | 0.000778 | *** |
| indus       | 2.056e-02     | 6.150e-02  | 0.334   | 0.738288 |     |
| chas        | 2.687e+00     | 8.616e-01  | 3.118   | 0.001925 | **  |
| nox         | -1.777e+01    | 3.820e+00  | -4.651  | 4.25e-06 | *** |
| rm          | 3.810e+00     | 4.179e-01  | 9.116   | < 2e-16  | *** |
| age         | 6.922e-04     | 1.321e-02  | 0.052   | 0.958229 |     |
| dis         | -1.476e+00    | 1.995e-01  | -7.398  | 6.01e-13 | *** |
| rad         | 3.060e-01     | 6.635e-02  | 4.613   | 5.07e-06 | *** |
| tax         | -1.233e-02    | 3.761e-03  | -3.280  | 0.001112 | **  |
| ptratio     | -9.527e-01    | 1.308e-01  | -7.283  | 1.31e-12 | *** |
| black       | 9.312e-03     | 2.686e-03  | 3.467   | 0.000573 | *** |
| lstat       | -5.248e-01    | 5.072e-02  | -10.347 | < 2e-16  | *** |

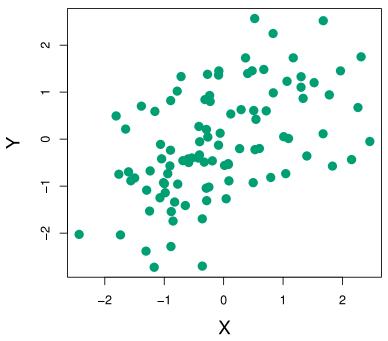
Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16



#### In many cases, we do not have a formula to calculate standard errors

- Example
  - Investing in two assets
  - Suppose that X and Y are the returns of two assets
  - These returns are observed every day:  $(x_1, y_1), \dots, (x_n, y_n)$









# Example

- We have a fixed amount of money to invest:  $\alpha$  fraction on X and  $1 \alpha$  fraction on Y
  - Therefore, our return will be:  $\alpha X + (1 \alpha)Y$
- We want to solve  $\alpha$  that minimizes the variance of our return

 $\min_{\alpha} \operatorname{Var}(\alpha X + (1 - \alpha)Y)$ 

- Solve  $\alpha$  from the first order derivative  $\frac{d \operatorname{Var}(\alpha X + (1 \alpha)Y)}{d \alpha} = 0$ • The optimal  $\alpha$  is:  $\alpha = \frac{\sigma_Y^2 - \operatorname{Cov}(X,Y)}{\sigma_Y^2 + \sigma_Y^2 - 2\operatorname{Cov}(X,Y)}$  (a take-home exercise)
  - $\sigma_X^2$  is the variance of X;  $\sigma_Y^2$  is the variance of Y
  - Cov(X, Y) is the covariance between X and Y



## Example

- We can approximate  $\alpha = \frac{\sigma_Y^2 \text{Cov}(X,Y)}{\sigma_X^2 + \sigma_Y^2 2\text{Cov}(X,Y)}$  with the observed data
  - $\hat{\sigma}_X^2$ ,  $\hat{\sigma}_Y^2$ , and  $\widehat{\text{Cov}}(X, Y)$  are from the observed data

• Calculate 
$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \widehat{\text{Cov}}(X,Y)}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\widehat{\text{Cov}}(X,Y)}$$



# Thought experiment

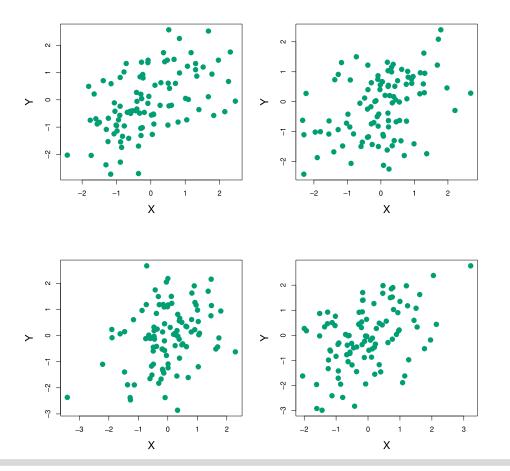
- Suppose we compute the estimate  $\hat{\alpha} = 0.6$  using the observed data  $(x_1, y_1), \cdots, (x_n, y_n)$
- How certain is this value?

- If we resample the observations, would we get a wildly different  $\hat{\alpha}$  (say 0.1)?
- In this **thought experiment**, we know the actual joint distribution P(X, Y), so we can resample the *n* observations



## Thought experiment

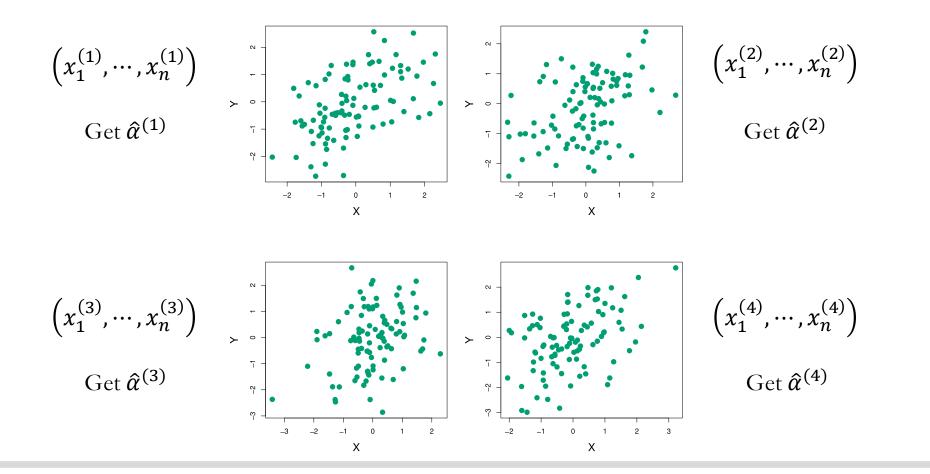
• In this **thought experiment**, we know the actual joint distribution P(X, Y), so we can resample the *n* observations





Thought experiment

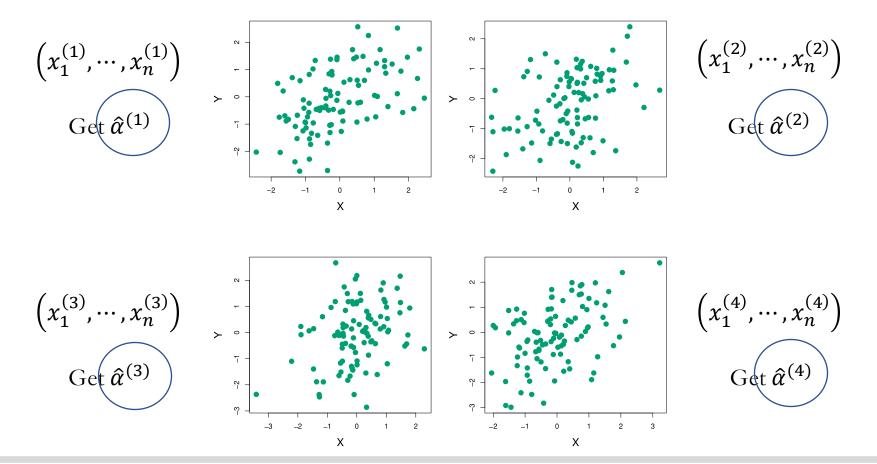
• Estimate an  $\hat{\alpha}$  from each sample





## Thought experiment

• Standard error of  $\hat{\alpha}$  is approximated by the standard deviation of  $\hat{\alpha}^{(1)}, \hat{\alpha}^{(2)}, \hat{\alpha}^{(3)}, \hat{\alpha}^{(4)}, \dots$ 

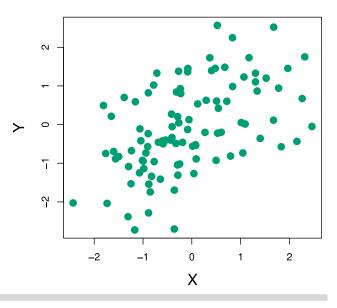


EMORY

# Bootstrap

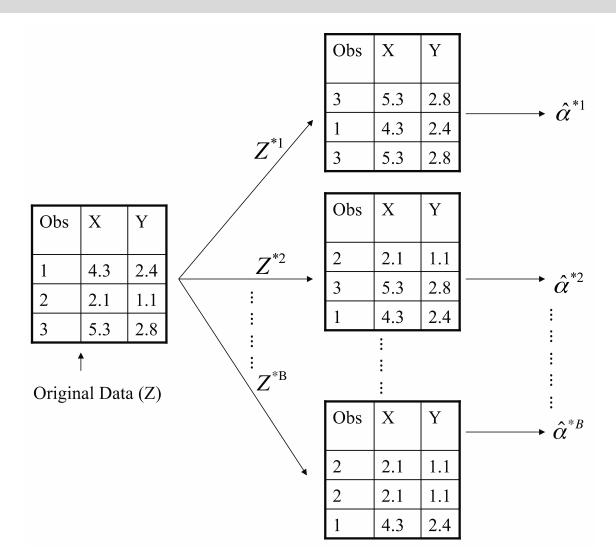
- Back to reality: we cannot resample the data  $\ensuremath{\mathfrak{S}}$ 
  - However, we can use the training data set to approximate the joint distribution of *X* and *Y*
- Bootstrap: Resample from the empirical distribution
  - Resample the data by drawing *n* samples **with replacement** from the actual observations

• 
$$\hat{P}(X = x, Y = y) = \frac{1}{n} \sum_{i=1}^{n} 1(x_i = x, y_i = y)$$





# Bootstrap



We have a fixed amount of money to invest:  $\alpha$  fraction on X and  $1 - \alpha$  fraction on Y

Estimate the standard error of  $\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \widehat{\text{Cov}}(X,Y)}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\widehat{\text{Cov}}(X,Y)}$ 

Use the standard error of  $\hat{\alpha}^{*1}, \hat{\alpha}^{*2}, \dots, \hat{\alpha}^{*B}$  to approximate the standard error of  $\hat{\alpha}$ 



# Bootstrap vs. Resampling from the true distribution

