QTM 347 Machine Learning

Lecture 6: Cross-Validation

Ruoxuan Xiong

Suggested reading: ISL. Chapter 5
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Lecture plan
* Review of LDA and QDA

e Cross validation
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Example of LDA/QDA: An iris data set

setosa versicolor virginica
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LLDA

* For each class k, we model P(X = x|Y = k) = fi,(x) as a Multivariate
Normal Distribution N (U, X) with mean U and covariance matrix X

* We estimate P(X = x|Y = k) as N({ig, 2) and P(Y = k) = i},

* We apply to Bayes theorem to obtain P(V = k | X = x)

PY=kX=x) PX=x|Y=KPY =k)
PX=x) Y PX=x1Y=)PY=))

Py=k|X=x)=
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QDA

* For each class k, we model P(X = x|Y = k) = fi,(x) as a Multivariate
Normal Distribution N (U, 2;,) with mean U and covariance matrix X,

* We estimate P(X = x|Y = k) as N({ig, 21) and P(Y = k) = 7,

* We apply to Bayes theorem to obtain P(V = k | X = x)

PY=kX=x) PX=x|Y=kPY =k)
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Comparison between LLDA and QDA

* Decision boundary: the set of points in which 2 classes do just as well

* LDA has /inear decision boundary
* QDA has guadratic decision boundary

e Bias-variance tradeoff

* LDA is less flexible but has a smaller variance. Small sample size n: LDA
* QDA requires more parameters. Large sample size n: QDA
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Lecture plan

e Cross validation
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Motivation

* Supervised learning: Minimize test error

* However, we only have access to the training error
* There 1s often a gap between them

* Illustration: Suppose we know what f is (the black curve)

* We generate data according to f as simulated data (in circles)
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Validation set approach

* Goal of validation set approach: Using the training data set alone, find
out the test error as closely as possible

* A first attempt:
* Randomly split the data in two parts
* Train the method in the first part
* Compute the error on the second part

!
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Example

e Estimate from engine horsepower

* Auto data: horsepower, gas mileage, and other information for 392 vehicles

* Simple linear regression
= fo + Pihorsepower

* Multiple linear regression with polynomial features

= By + Bhorsepower +B,horsepower?

= By + Bihorsepower +fohorsepower” +Bzhorsepower”

* Which polynomial is the right relationship?
* Resampling
* Partition 392 samples into two sets with equal size

* One is the training set and the other one 1s the validation set
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Example

e Hstimate from engine horsepower
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Degree of Polynomial

* Each line 1s the result with a different random split of the data into two
parts

* Every split yields a different estimate of the error ®
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L.eave-one-out cross-validation

e J.eave-one-out cross-validation

* Foreveryi = 1,---,n,
* Train the model on every point except i;
* Compute the test error on the hold-out point;

. Average over all n points.

!
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L.eave-one-out cross-validation
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Training data (n — 1 points)
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L.eave-one-out cross-validation
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Training data (n — 1 points)
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L.eave-one-out cross-validation

v

Training data (n — 1 points)
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L.eave-one-out cross-validation

Estimate cross-
validation error
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Cross-validation error

* Regression with mean squared loss

. Y’i(_i): Prediction for the ith sample without using the ith sample

) o
* CViy =~ 2ima (Vi — 77y

e Classification with zero-one loss

. ?i(_i): Prediction for the ith sample without using the ith sample

) .
* CViny = n 9 [Yi " Yi( l)]
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Example

e Estimate from engine horsepower
* The LOOCYV error curve
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LOOCYV has low bias and no randomness

* Each training set in LOOCYV has n — 1 observations, almost as many as
are in the entire data set

»LOOCYV tends not to overestimate the test error rate by too much (low bias)

»There is no randomness in the training/validation set splits
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Computational concerns

* Computing (V5 can be computationally expensive, since it involves
fitting the model n times

* What if we use a model other than linear or polynomial regression?

* k-fold cross-validation: Split the data into k equal sized subsets

* Only requires fitting the model k times

n . . .
* o times speed up over leave one out cross-validation
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