#### QTM 347 Machine Learning

#### Lecture 5: LDA and QDA

Ruoxuan Xiong Suggested reading: ISL Chapter 4





• LDA and QDA



#### Generative vs discriminative methods

- Generative methods
  - 1. Model the joint probability p(x, y)
  - 2. Assume some distribution for conditional distribution of X given Y = k, P(X = x | Y = k)
  - 3. Bayes theorem is applied to obtain P(Y = k | X = x) and classify
  - E.g., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)
- Discriminative methods
  - Directly model P(Y = k | X = x) and classify
  - E.g., logistic regression



# Example: An iris data set

- Perhaps the best known database in the pattern recognition literature
- Predict class of iris plant
- There are three classes



**Iris Versicolor** 

#### **Iris Setosa**

Iris Virginica



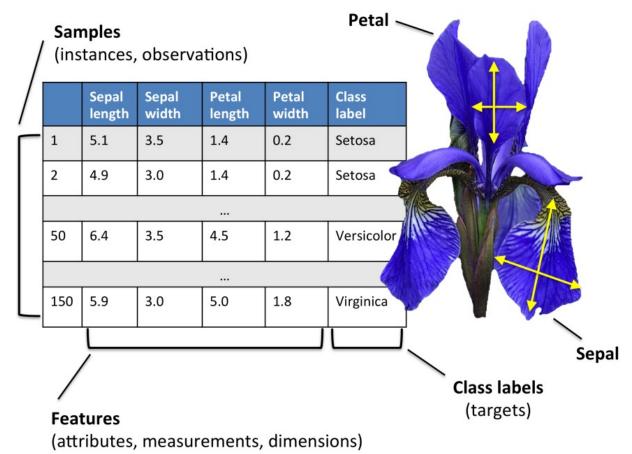
# Sepal and petal of iris





# Example: An iris data set

- 50 samples from each of three class of Iris (versicolor, setosa, virginica)
- Four features: sepal length, sepal width, petal length, petal width





Estimating 
$$\pi_k = P(Y = k)$$

• The fraction of training samples of class k

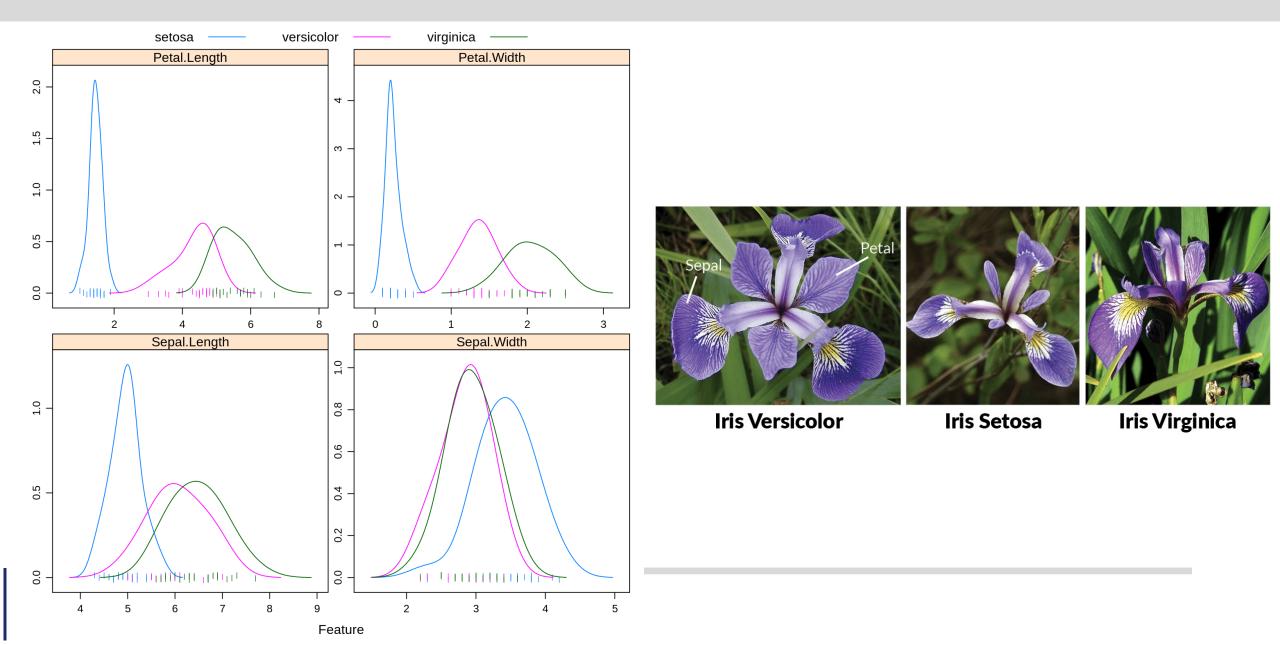
$$\hat{\pi}_k = \hat{P}(Y = k) = \frac{\#\{i: y_i = k\}}{n}$$

• Iris data: 50 samples from each of three class of *Iris (versicolor, setosa, virginica)*. Then

$$\hat{\pi}_{setosa} = \hat{\pi}_{versicolor} = \hat{\pi}_{vriginica} = \frac{50}{50 + 50 + 50} = \frac{1}{3}$$



#### Distribution of features



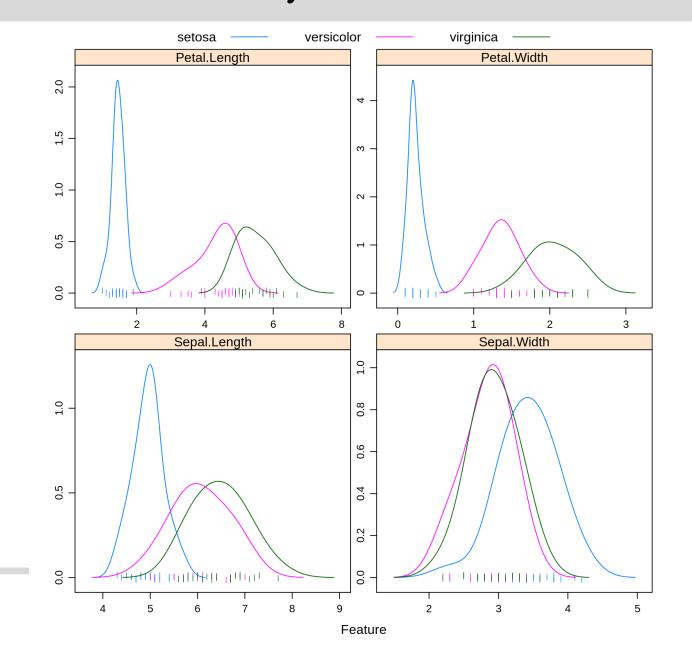
#### Linear discriminant analysis

• Model P(X = x | Y = k)

• X =  $\begin{bmatrix} sepal \ length \\ sepal \ width \\ petal \ length \\ petal \ width \end{bmatrix}$ 

•  $Y \in \{versicolor, setosa, virginica\}$ 

by a *Multivariate Normal Distribution*  $N(\mu_k, \Sigma)$  with mean  $\mu_k$ , covariance matrix  $\Sigma$ 

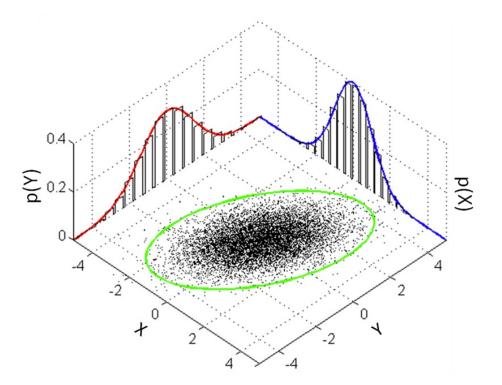




2/4/25

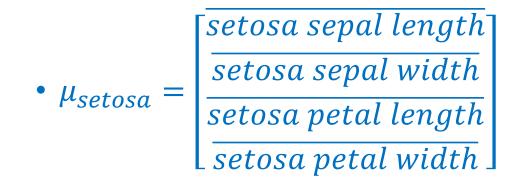
#### Multivariate normal distribution

- Illustration of a two-dimensional multivariate normal distribution
  - Centered at zero
  - Projection to every dimension (blue and red) is still a Gaussian

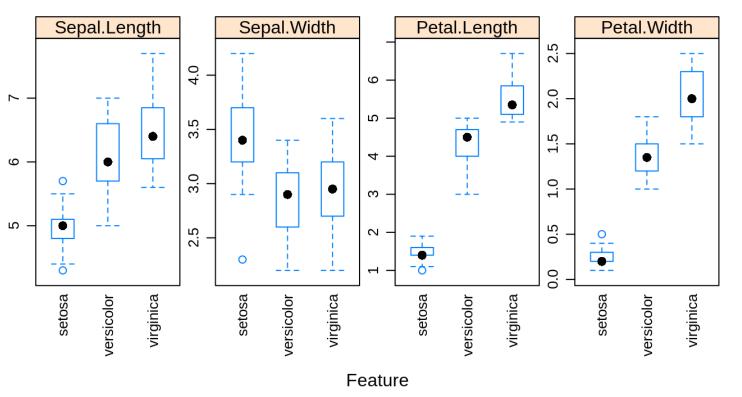




# $\mu_k$ in Linear discriminant analysis



- Bar represents average value
- Black dots of setosa in the box plots



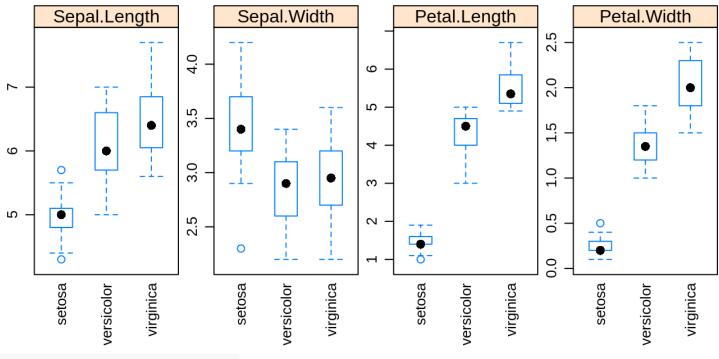


# Estimating the center $\mu_k$

Estimate the center of each class μ<sub>k</sub>:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

where 
$$n_k = #\{i: y_i = k\}$$



## Group means:

Feature

| ##            | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|---------------|--------------|-------------|--------------|-------------|
| ## setosa     | 4.958621     | 3.420690    | 1.458621     | 0.237931    |
| ## versicolor | 6.063636     | 2.845455    | 4.318182     | 1.354545    |
| ## virginica  | 6.479167     | 2.937500    | 5.479167     | 2.045833    |



#### $\Sigma$ in Linear discriminant analysis

- Σ is the same for *versicolor, setosa, virginica*
  - Diagonal entries equal to variance of each feature for all classes
    - Proportional to the width of the box plots
  - Off-diagonal entries equal to covariance between two features for all classes
- What if  $\Sigma$  should be different for different class?





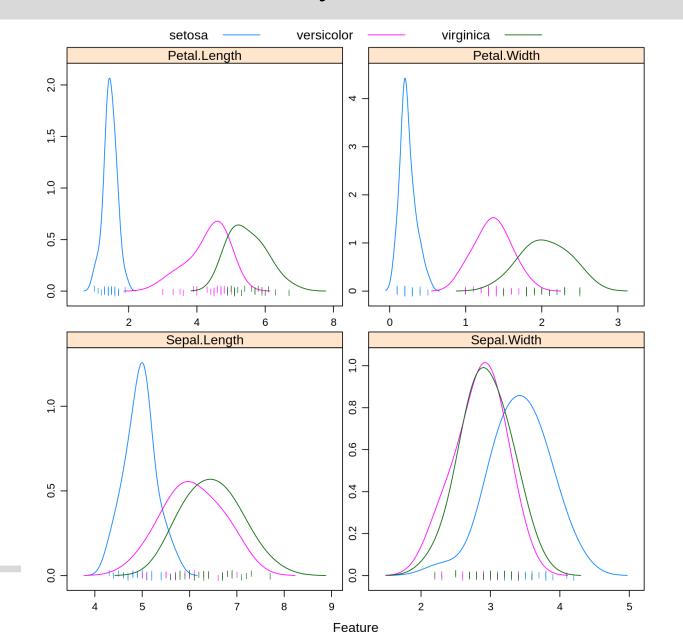
#### Quadratic discriminant analysis

• Model P(X = x | Y = k)

• X =  $\begin{bmatrix} sepal \ length \\ sepal \ width \\ petal \ length \\ petal \ width \end{bmatrix}$ 

•  $Y \in \{versicolor, setosa, virginica\}$ 

by a *Multivariate Normal Distribution*  $N(\mu_k, \Sigma_k)$  with mean  $\mu_k$ , covariance matrix  $\Sigma_k$ 



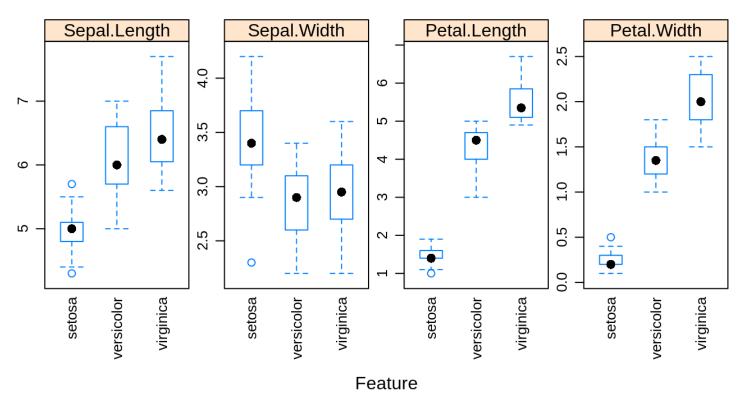


2/4/25

# $\Sigma_k$ in Quadratic discriminant analysis

• Σ<sub>setosa</sub>

- Diagonal entries equal to variance of each feature for setosa
- Off-diagonal entries equal to covariance between two features for setosa



## Estimating the covariance $\Sigma_k$ in QDA

• Estimate the covariance  $\Sigma_k$ 

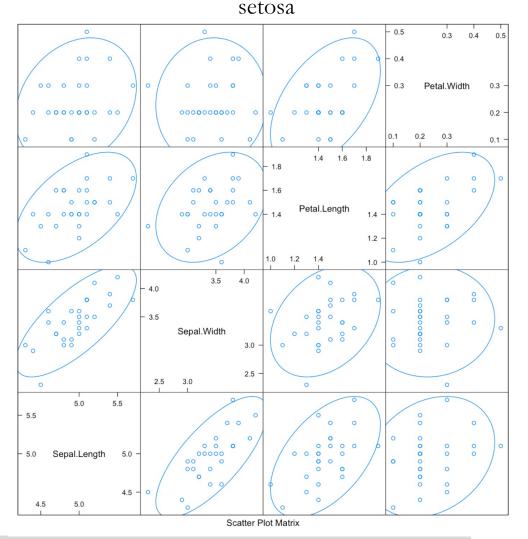
$$\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{k}} = \frac{1}{n_k - 1} \sum_{i: y_i = k} (x_i - \widehat{\mu}_k) \cdot (x_i - \widehat{\mu}_k)^{\mathsf{T}}$$

where  $n_k = #\{i: y_i = k\}$ 

• Example:  $\Sigma_{setosa}$ 

iris\_trn\_setosa <- iris\_trn[iris\_trn\$Species == "setosa",]
cov(iris\_trn\_setosa[,c(1:4)])</pre>

##Sepal.LengthSepal.WidthPetal.LengthPetal.Width##Sepal.Length0.1032266010.0951724140.0317980300.007697044##Sepal.Width0.0951724140.1609852220.0251724140.001687192##Petal.Length0.0317980300.0251724140.0353694580.009125616##Petal.Width0.0076970440.0016871920.0091256160.009581281





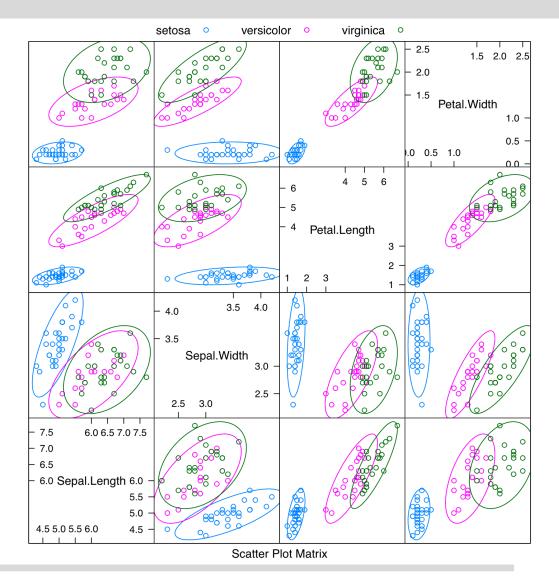
#### Estimating the covariance $\Sigma$ in LDA

• Estimate the covariance  $\Sigma$ 

$$\widehat{\Sigma} = \sum_{k=1}^{K} \frac{n_k - 1}{n - K} \cdot \widehat{\Sigma}_k$$

where  $n_k = #\{i: y_i = k\}$ 

| • Example: $\hat{\Sigma} = \frac{n_{setosa} - 1}{n-3} \cdot \hat{\Sigma}_{setosa}$   | $\frac{n_{versicolor}-1}{n-3}$ . |
|--------------------------------------------------------------------------------------|----------------------------------|
| $\widehat{\Sigma}_{versicolor} + \frac{n_{virginica}-1}{n-3} \cdot \widehat{\Sigma}$ | virginica                        |





## Summary of LDA

• For each class k, we model  $P(X = x | Y = k) = f_k(x)$  as a *Multivariate* Normal Distribution  $N(\mu_k, \Sigma)$  with mean  $\mu_k$  and covariance matrix  $\Sigma$ 

• We estimate 
$$\hat{P}(X = x | Y = k)$$
 as  $N(\hat{\mu}_k, \hat{\Sigma})$  and  $\hat{P}(Y = k) = \hat{\pi}_k$ 

• We apply to Bayes theorem to obtain P(Y = k | X = x)

$$\hat{P}(Y = k \mid X = x) = \frac{\hat{P}(Y = k, X = x)}{\hat{P}(X = x)} = \frac{\hat{P}(X = x \mid Y = k)\hat{P}(Y = k)}{\sum_{j} \hat{P}(X = x \mid Y = j)\hat{P}(Y = j)}$$



# Summary of QDA

• For each class k, we model  $P(X = x | Y = k) = f_k(x)$  as a *Multivariate Normal Distribution*  $N(\mu_k, \Sigma_k)$  with mean  $\mu_k$  and covariance matrix  $\Sigma_k$ 

• We estimate 
$$\hat{P}(X = x | Y = k)$$
 as  $N(\hat{\mu}_k, \hat{\Sigma}_k)$  and  $\hat{P}(Y = k) = \hat{\pi}_k$ 

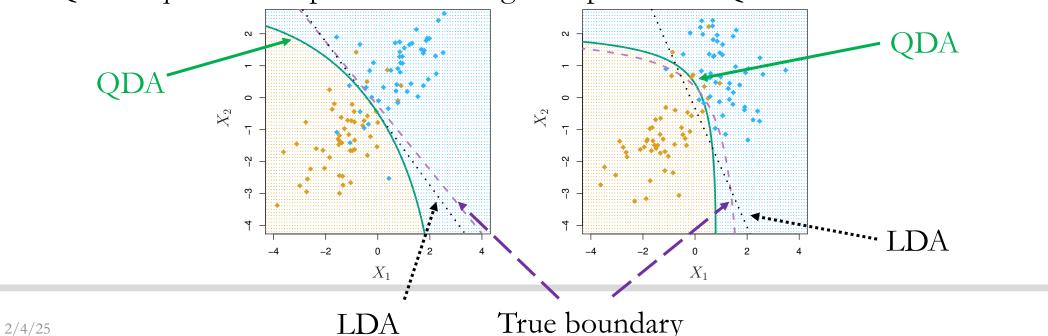
• We apply to Bayes theorem to obtain P(Y = k | X = x)

$$\hat{P}(Y = k \mid X = x) = \frac{\hat{P}(Y = k, X = x)}{\hat{P}(X = x)} = \frac{\hat{P}(X = x \mid Y = k)\hat{P}(Y = k)}{\sum_{j} \hat{P}(X = x \mid Y = j)\hat{P}(Y = j)}$$



# Comparison between LDA and QDA

- Decision boundary: the set of points in which 2 classes do just as well
  - LDA has *linear* decision boundary
  - QDA has *quadratic* decision boundary
- Bias-variance tradeoff
  - LDA is less flexible but has a smaller variance. Small sample size n: LDA
  - QDA requires more parameters. Large sample size n: QDA



EMORY