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Lecture 5: LDA and QDA



Lecture plan
• LDA and QDA
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Generative vs discriminative methods
• Generative methods 

1. Model the joint probability 𝑝 𝑥, 𝑦  
2. Assume some distribution for conditional distribution of  𝑋 given 𝑌 = 𝑘, 

𝑃 𝑋 = 𝑥|𝑌 = 𝑘
3. Bayes theorem is applied to obtain 𝑃 𝑌 = 𝑘|𝑋 = 𝑥  and classify
• E.g., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)

• Discriminative methods
• Directly model 𝑃 𝑌 = 𝑘|𝑋 = 𝑥  and classify
• E.g., logistic regression
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Example: An iris data set
• Perhaps the best known database in the pattern recognition literature
• Predict class of  iris plant
• There are three classes
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Sepal and petal of  iris
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Example: An iris data set
• 50 samples from each of  three class of Iris (versicolor, setosa, virginica)
• Four features: sepal length, sepal width, petal length, petal width
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Estimating 𝜋! = 𝑃 𝑌 = 𝑘
• The fraction of  training samples of  class 𝑘

!𝜋! = $𝑃 𝑌 = 𝑘 =
#{𝑖: 𝑦" = 𝑘}

𝑛

• Iris data: 50 samples from each of  three class of Iris (versicolor, setosa, 
virginica). Then 

!𝜋#$%&#' = !𝜋($)#"*&+&) = !𝜋()","-"*' =
50

50 + 50 + 50
=
1
3
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Distribution of  features
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Linear discriminant analysis
• Model 𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

• 𝑋 =

𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

• 𝑌 ∈ {𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}

by a Multivariate Normal Distribution 𝑁(𝜇!, Σ) 
with mean 𝜇!, covariance matrix Σ
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Multivariate normal distribution
• Illustration of  a two-dimensional multivariate normal distribution
• Centered at zero
• Projection to every dimension (blue and red) is still a Gaussian
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𝜇! in Linear discriminant analysis

• 𝜇"#$%"& =

𝑠𝑒𝑡𝑜𝑠𝑎	𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

• Bar represents average value

• Black dots of  setosa in the box plots
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Estimating the center 𝜇!
• Estimate the center of  each 

class 𝜇4 :

!𝜇! =
1
𝑛!

6
":/!0!

𝑥"

where 𝑛! = #{𝑖: 𝑦' = 𝑘}
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Σ in Linear discriminant analysis
• Σ is the same for 
𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎

• Diagonal entries equal to variance of  
each feature for all classes
• Proportional to the width of  the box plots

• Off-diagonal entries equal to covariance 
between two features for all classes

• What if  Σ should be different for 
different class?
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Quadratic discriminant analysis
• Model 𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

• 𝑋 =

𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

• 𝑌 ∈ {𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}

by a Multivariate Normal Distribution 
𝑁(𝜇!, Σ!) with mean 𝜇!, covariance matrix 
Σ!
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Σ! in Quadratic discriminant analysis
• Σ"#$%"&

• Diagonal entries equal to variance 
of  each feature for setosa

• Off-diagonal entries equal to 
covariance between two features 
for setosa
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Estimating the covariance Σ! in QDA
• Estimate the covariance Σ4 

$Σ! =
1

𝑛! − 1
6
":/!0!

(𝑥"−!𝜇!) ⋅ (𝑥"−!𝜇!)1

where 𝑛! = #{𝑖: 𝑦" = 𝑘}

• Example: Σ#$%&#'
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Estimating the covariance Σ in LDA
• Estimate the covariance Σ

$Σ = 6
!02

3
𝑛! − 1
𝑛 − 𝐾

⋅ $Σ!

where 𝑛! = #{𝑖: 𝑦" = 𝑘}

• Example: $Σ = -"#$%"&42
-45

⋅ $Σ#$%&#' +
-'#("!)%*%(42

-45
⋅

$Σ($)#"*&+&) +
-'!(+!,!)&42

-45
⋅ $Σ("),"-"*'
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Summary of  LDA
• For each class 𝑘, we model 𝑃 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑓4(𝑥) as a Multivariate 

Normal Distribution 𝑁(𝜇4 , Σ) with mean 𝜇4 and covariance matrix Σ

• We estimate 1𝑃 𝑋 = 𝑥|𝑌 = 𝑘  as 𝑁(2𝜇4 , 1Σ) and 1𝑃 𝑌 = 𝑘 = 2𝜋4

• We apply to Bayes theorem to obtain 𝑃 𝑌 = 𝑘 ∣ 𝑋 = 𝑥

$𝑃 𝑌 = 𝑘 ∣ 𝑋 = 𝑥 =
$𝑃(𝑌 = 𝑘, 𝑋 = 𝑥)

$𝑃(𝑋 = 𝑥)
=

$𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑘 $𝑃(𝑌 = 𝑘)
∑6 $𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑗 $𝑃(𝑌 = 𝑗)
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Summary of  QDA
• For each class 𝑘, we model 𝑃 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑓4(𝑥) as a Multivariate 

Normal Distribution 𝑁 𝜇4 , Σ4  with mean 𝜇4 and covariance matrix Σ4

• We estimate 1𝑃 𝑋 = 𝑥|𝑌 = 𝑘  as 𝑁(2𝜇4 , 1Σ4) and 1𝑃 𝑌 = 𝑘 = 2𝜋4

• We apply to Bayes theorem to obtain 𝑃 𝑌 = 𝑘 ∣ 𝑋 = 𝑥

$𝑃 𝑌 = 𝑘 ∣ 𝑋 = 𝑥 =
$𝑃(𝑌 = 𝑘, 𝑋 = 𝑥)

$𝑃(𝑋 = 𝑥)
=

$𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑘 $𝑃(𝑌 = 𝑘)
∑6 $𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑗 $𝑃(𝑌 = 𝑗)
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Comparison between LDA and QDA
• Decision boundary: the set of  points in which 2 classes do just as well 
• LDA has linear decision boundary
• QDA has quadratic decision boundary

• Bias-variance tradeoff
• LDA is less flexible but has a smaller variance. Small sample size 𝑛: LDA
• QDA requires more parameters. Large sample size 𝑛: QDA
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