QTM 347 Machine Learning

Lecture 4: Classification

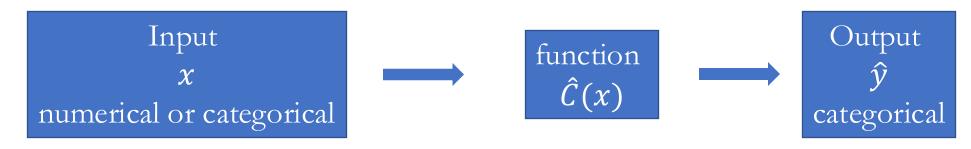
Ruoxuan Xiong Suggested reading: ISL Chapter 4

Lecture plan

- Logistic regression
- Generative vs discriminative methods

Classification problem

- Classification is a form of supervised machine learning
- The response variable Y is categorical, as opposed to numerical for regression
- Our goal is to find a function C which takes feature(s), x, as input, and outputs a category which is the same as the true category as frequently as possible



An example of classification problem: Image classification

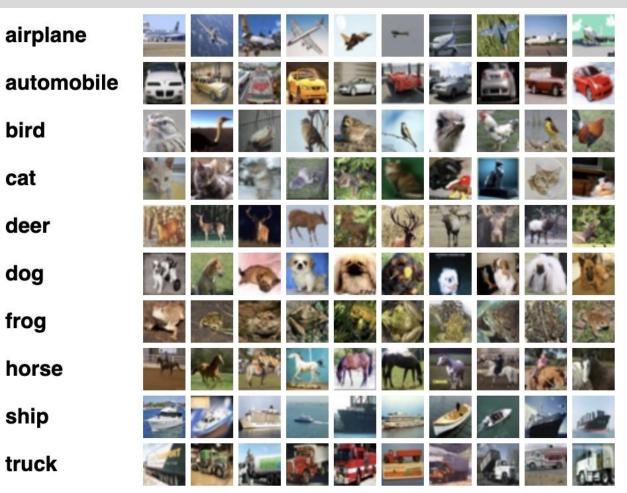
- Image classification involves assigning a label to an entire image or photograph
- For example, classifying a handwritten digit

22222222222222222 3**33**3333333333333 33 333 4844444444444444444 6666666666666666 ч 8 888 8 8 8 8 8 8 99 9 9 D. q 9 9 9

MNIST dataset: Modified National Institute of Standards and Technology dataset 60,000 images of handwritten single digits between 0 and 9

An example of classification problem: Image classification

- Image classification involves assigning a label to an entire image or photograph
- For example, recognizing objects in photos



CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of each class

A simpler example of classification problem

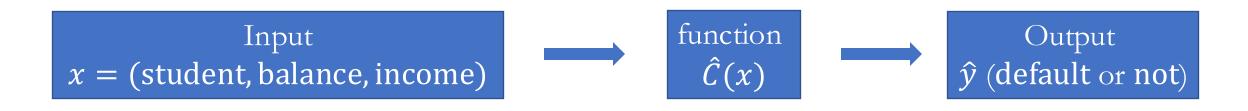
- A data set containing information on ten thousand customers
 - **default**: whether the customer defaulted on their debt
 - student: whether the customer is a student
 - balance: the average balance that the customer has remaining on their credit card after making their monthly payment
 - income: income of customer
- We seek to predict which customers will default on their credit card debt

## #	А	tibble:	10,000	Х	4	
------	---	---------	--------	---	---	--

##		default	t stud	lent	balance	income
##		<fct></fct>	<fct< td=""><td>></td><td><dbl></dbl></td><td><dbl></dbl></td></fct<>	>	<dbl></dbl>	<dbl></dbl>
##	1	No	No		730.	44362.
##	2	No	Yes		817.	12106.
##	3	No	No		1074.	31767.
##	4	No	No		529.	35704.
##	5	No	No		786.	38463.
##	6	No	Yes		920.	7492.
##	7	No	No		826.	24905.
##	8	No	Yes		809.	17600.
##	9	No	No		1161.	37469.
##	10	No	No		0	29275.
##	#.	. with 9	9,990	more	rows	

Example: default prediction

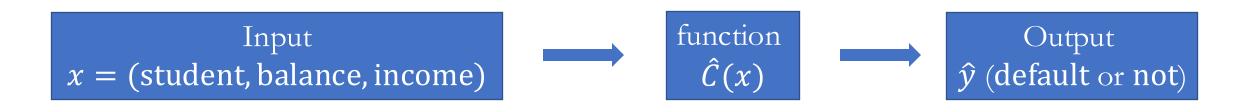
• We seek to predict which customers will default on their credit card debt



- What can \hat{C} be?
- How can we evaluate whether \hat{C} is a "good" function or not?

Example: default prediction

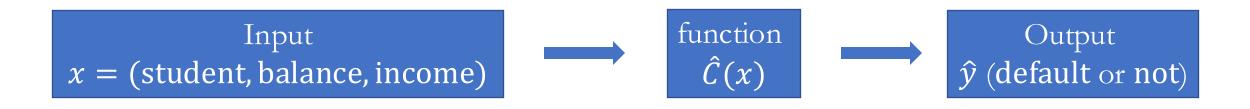
• We seek to predict which customers will default on their credit card debt



- What can \hat{C} be?
 - Logit model (from your regression analysis, we will have a quick review)
 - K-nearest neighbors classification
 - Linear Discriminant Analysis (LDA)
 - Quadratic Discriminant Analysis (QDA)
 - . . .

Example: default prediction

• We seek to predict which customers will default on their credit card debt



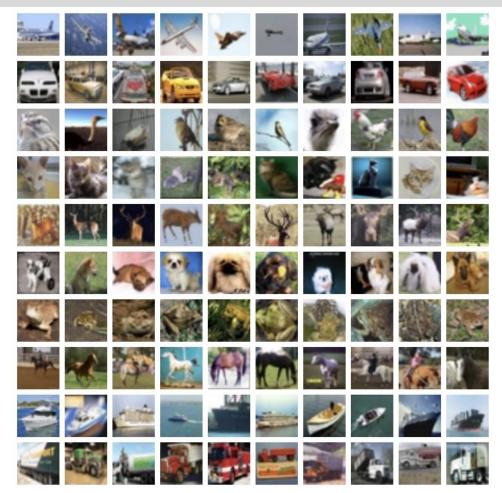
- How can we evaluate whether \hat{C} is a "good" function or not?
 - We need an evaluation metric
 - Can we use MSE?

MSE is not a good metric for classification problem...

- Suppose true class $y_0 = 10$ (truck)
- We have two functions \hat{C}
 - First function: $\hat{y}_0 = \hat{C}_1(x_0) = 1$ (predicted as airplane)
 - Squared error: $(y_0 \hat{y}_0)^2 = (10 1)^2 = 81$
 - Second function: $\hat{y}_0 = \hat{C}_2(x_0) = 6$ (predicted as dog)
 - Squared error: $(y_0 \hat{y}_0)^2 = (10 6)^2 = 16$
 - Can we say first function is five y_i = times worse than second function?

 $y_i = 1$ airplane $y_i = 2$ automobile $v_i = 3$ bird cat deer dog frog horse ship

 $y_i = 10$ truck



CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of each class

Evaluation metric: Classification error rate

• Classification error rate:

$$\operatorname{err}(\hat{C}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(Y_i \neq \hat{C}(X_i))$$

• $1(\cdot)$: indicator function

$$1\left(Y_i \neq \hat{C}(X_i)\right) = \begin{cases} 1 & Y_i \neq \hat{C}(X_i) \\ 0 & Y_i = \hat{C}(X_i) \end{cases}$$

• We are essentially calculating the proportion of predicted classes that mismatch the true class

Training/test classification error rate

- Training data: the observations, $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$, that we use estimate C
- Training classification error rate: $\operatorname{err}(\hat{C}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(Y_i \neq \hat{C}(X_i))$
- Test data: the data, $(X'_1, Y'_1), (X'_2, Y'_2), \dots, (X'_m, Y'_m)$, that are previous unseen and not used to fit C

• Test classification error rate:
$$\operatorname{err}(\hat{C}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(Y_i' \neq \hat{C}(X_i'))$$

Logit model

• The logit model is (use the default prediction as an example)

$$\log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right] = \beta'\tilde{X} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}_X$$

where $\tilde{X} = (1, \text{student}, \text{balance}, \text{income})$

•
$$P(Y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income})}}$$

• Proof: For notation simplicity, $P(Y = 1|X) = p_{1X}$ and $P(Y = 0|X) = p_{0X}$. Then $\log \left[\frac{p_{1X}}{p_{0X}}\right] = \log \left[\frac{p_{1X}}{1-p_{1X}}\right] = \beta' \tilde{X} \Rightarrow \frac{p_{1X}}{1-p_{1X}} = e^{\beta' \tilde{X}} \Rightarrow p_{1X} = e^{\beta' \tilde{X}} - p_{1X}e^{\beta' \tilde{X}}$ $\Rightarrow p_{1X} \left(1 + e^{\beta' \tilde{X}}\right) = e^{\beta' \tilde{X}} \Rightarrow p_{1X} = \frac{e^{\beta' \tilde{X}}}{1+e^{\beta' \tilde{X}}} \Rightarrow p_{1X} = \frac{1}{1+e^{-\beta' \tilde{X}}}$

Odd ratio

• The logit model is

$$\log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right] = \beta'\tilde{X}$$

•
$$\frac{P(Y=1|X)}{P(Y=0|X)}$$
: odds ratio $\in [0,\infty)$

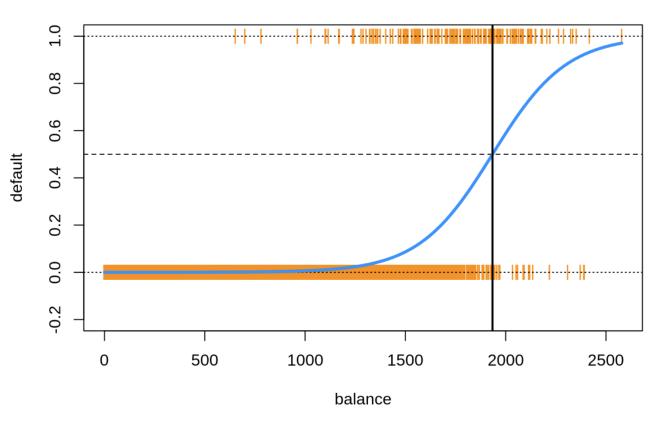
•
$$\log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$
: log odds

How to make prediction from logit model?

- Consider a simpler logit model
 - $\log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right] = \beta_0 + \beta_1 \cdot \text{balance}$
- Fitted model
 - $\widehat{P}(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1\cdot\text{balance})}}$
 - Blue curve in the figure
- Prediction

•
$$\hat{C}(x) = \begin{cases} 1 & \hat{P}(Y=1|X=x) > 0.5 \\ 0 & \hat{P}(Y=1|X=x) \le 0.5 \end{cases}$$

Using Logistic Regression for Classification



The orange | characters are the data (x_i, y_i)

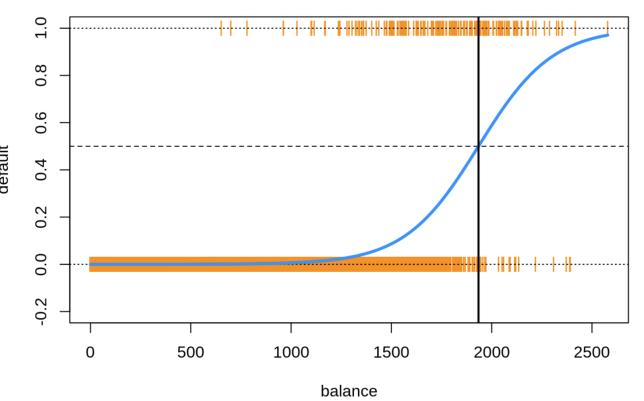
How to make prediction from logit model?

• Prediction

•
$$\hat{C}(x) = \begin{cases} 1 & \hat{P}(Y=1|X=x) > 0.5 \\ 0 & \hat{P}(Y=1|X=x) \le 0.5 \end{cases}$$

- The solid vertical black line represents the **decision boundary**, and satisfies $\hat{P}(Y = 1 | X = x) = 0.5$
- In this case, balance = 1934.22

Using Logistic Regression for Classification



The orange | characters are the data (x_i, y_i)

Bayes classifier

• The rule

$$\hat{C}(x) = \begin{cases} 1 & \hat{P}(Y=1|X=x) > 0.5 \\ 0 & \hat{P}(Y=1|X=x) \le 0.5 \end{cases}$$

is an example of Bayes classifier

- Bayes classifier minimizes the classification error rate
 - Proof: Suppose $\hat{P}(Y = 1 | X = x) > 0.5$.
 - Output class 1: classification error rate is $1 \hat{P}(Y = 1 | X = x) < 0.5$
 - Output class 0: classification error rate is $\hat{P}(Y = 1 | X = x) > 0.5$
 - > Output class 1 minimizes the classification error rate

Bayes classifier

• For a general number of classes (2 or more), Bayes classifier is

$$C^B(x) = \operatorname{argmax}_g P(Y = g | X = x)$$

- $C^B(x)$ is the class with highest probability
- Proof: Suppose g^* maximizes P(Y = g | X = x).
 - Output class g^* : classification error rate is $1 P(Y = g^* | X = x)$
 - Output class g': classification error rate is 1 P(Y = g' | X = x)
 - As $P(Y = g^* | X = x) \ge P(Y = g' | X = x)$, we have $1 P(Y = g^* | X = x) \le 1 P(Y = g' | X = x)$
 - Output class g^* minimizes the classification error rate

Lecture plan

• Logistic regression

• Generative vs discriminative methods

Generative vs discriminative methods

- Generative methods
 - 1. Model the joint probability p(x, y)
 - 2. Assume some distribution for conditional distribution of X given Y = k, P(X = x | Y = k)
 - 3. Bayes theorem is applied to obtain P(Y = k | X = x) and classify
 - E.g., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)
- Discriminative methods
 - Directly model P(Y = k | X = x) and classify
 - E.g., logistic regression

Bayes theorem

- Given
 - Conditional distribution of X given Y = k: P(X = x | Y = k)
 - The **prior** probabilities for each possible class k: P(Y = k)
- Bayes theorem to obtain P(Y = k | X = x)

$$P(Y = k \mid X = x) = \frac{P(Y = k, X = x)}{P(X = x)}$$

$$= \frac{P(X=x|Y=k)P(Y=k)}{\sum_{j} P(X=x|Y=j)P(Y=j)}$$

Example: An iris data set

- Perhaps the best known database in the pattern recognition literature
- Predict class of iris plant
- There are three classes

Iris Versicolor

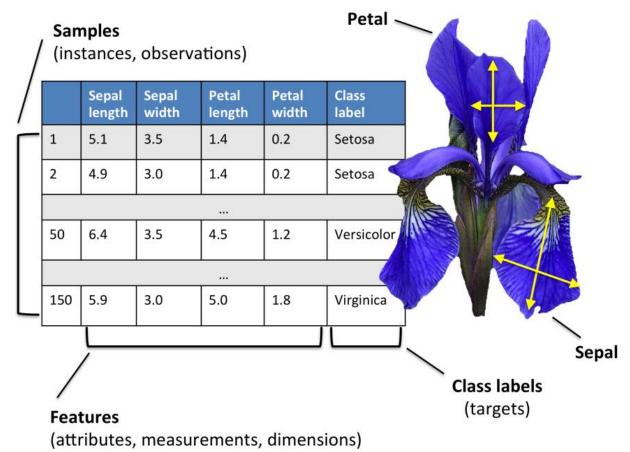
Iris Setosa

Iris Virginica

Sepal and petal of iris

Example: An iris data set

- 50 samples from each of three class of Iris (versicolor, setosa, virginica)
- Four features: sepal length, sepal width, petal length, petal width



2/3/2025

Distribution of features

