QTM 347 Machine Learning

Lecture 3: KNN

Ruoxuan Xiong Suggested reading: ISL Chapters 2 and 4

Lecture plan

• K-nearest neighbors (KNN) regression

• K-nearest neighbors (KNN) classification

K-nearest neighbors regression

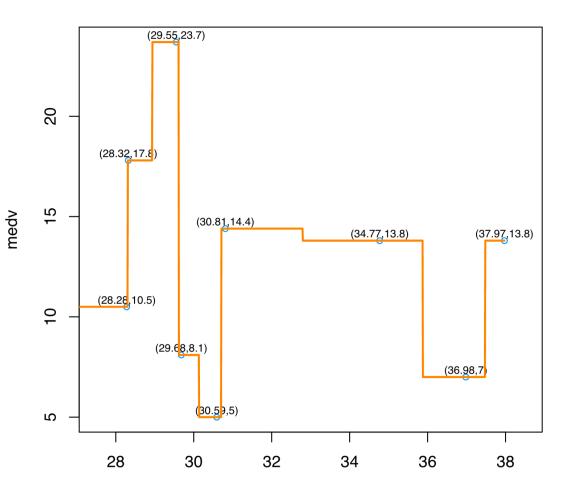
- A non-parametric approach
- K is a user-defined constant
 - *K* is an integer, e.g., 1,2,3,...
- Given a value for K and a prediction point x_0 , $\hat{f}(x_0)$ is the average of the responses of K nearest neighbors

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} y_i$$

• $N_K(x_0)$ is the set of K training observations that are closest to x_0

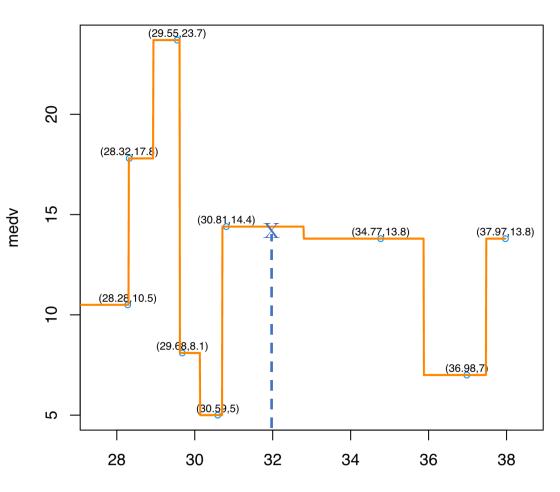
Example: 1-nearest neighbor regression

- Prediction of the median house value of a neighbor given the percentage of households with low socioeconomic status (lstat)
- Orange curve: $\hat{f}(x_0)$
 - $\hat{f}(x_0)$ equals to the response of x_0 's nearest neighbor
 - $\hat{f}(x_0)$ is a step function



Prediction at
$$x_0 = 32$$
 ($K = 1$)

- $x_0 = 32$
- $N_K(x_0) = \{30.81\}$
- $\hat{f}(x_0 = 32) = 14.4$



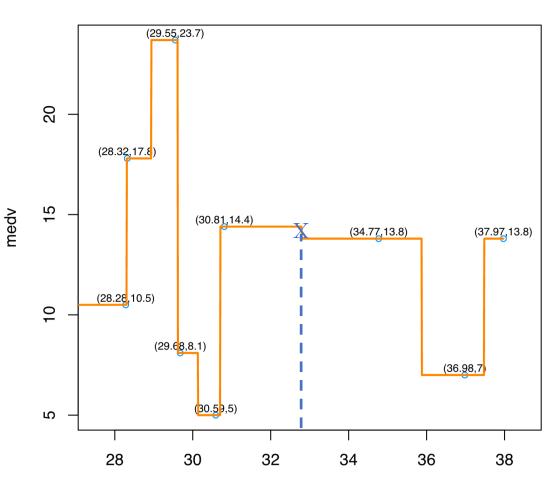
Istat

Now let us understand why $\hat{f}(x_0)$ is a step function

k = 1

- $x_0 = 32.79$
 - It is a switching point!
- $N_K(x_0) = \{30.81\}$ or $N_K(x_0) = \{34.77\}$
 - Note that 32.79 30.81 = 1.98 = 34.77 32.79

•
$$\hat{f}(x_0 = 32.79) = 14.4$$
 or $\hat{f}(x_0 = 32.79) = 13.8$



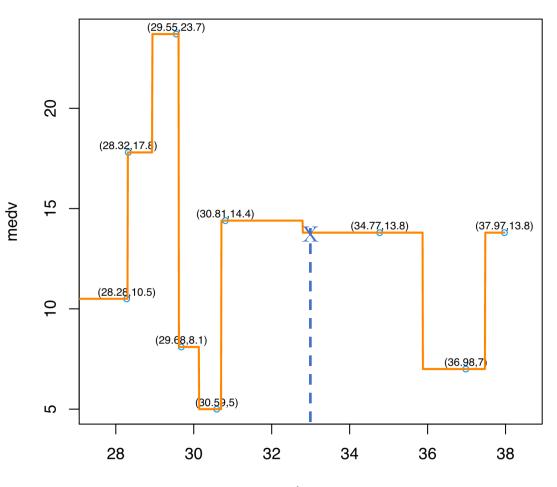
lstat

Prediction at
$$x_0 = 33$$
 ($K = 1$)

• $x_0 = 33$

N_K(x₀) = {34.77}
Note that 34.77 - 33 = 1.77 < 33 - 30.81 = 2.19

•
$$\hat{f}(x_0 = 33) = 13.8$$

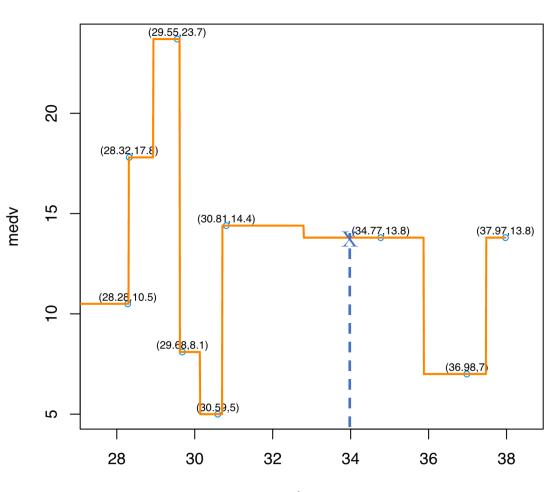


Istat

1/28/25

Prediction at
$$x_0 = 34$$
 ($K = 1$)

- $x_0 = 34$
- $N_K(x_0) = \{34.77\}$
- $\hat{f}(x_0 = 34) = 13.8$

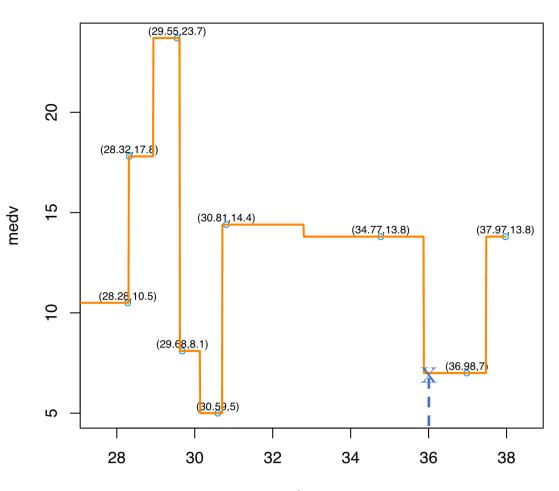


Istat

Prediction at
$$x_0 = 36$$
 ($K = 1$)

- $x_0 = 36$
- $N_K(x_0) = \{36.98\}$

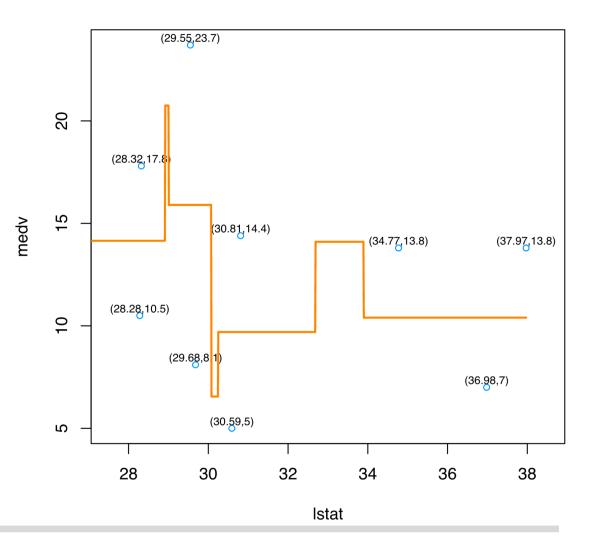
•
$$\hat{f}(x_0 = 36) = 7$$



Istat

Example: 2-nearest neighbor regression

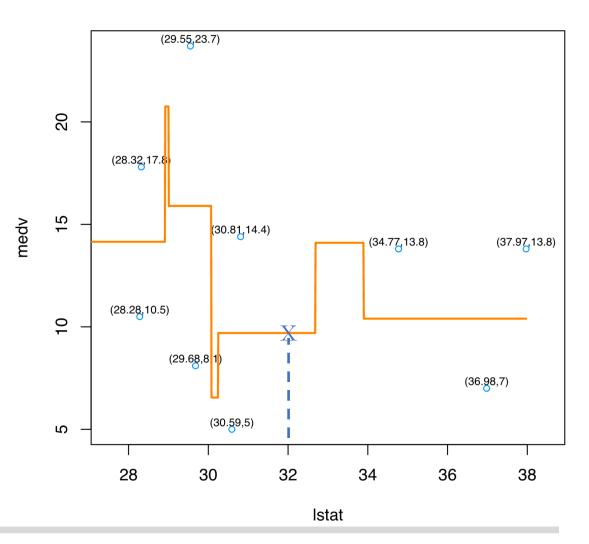
• $\hat{f}(x_0)$ equals to the average of responses of x_0 's 2 nearest neighbors



Prediction at
$$x_0 = 32$$
 ($K = 2$)

- $x_0 = 32$
- $N_K(x_0) = \{30.59, 30.81\}$

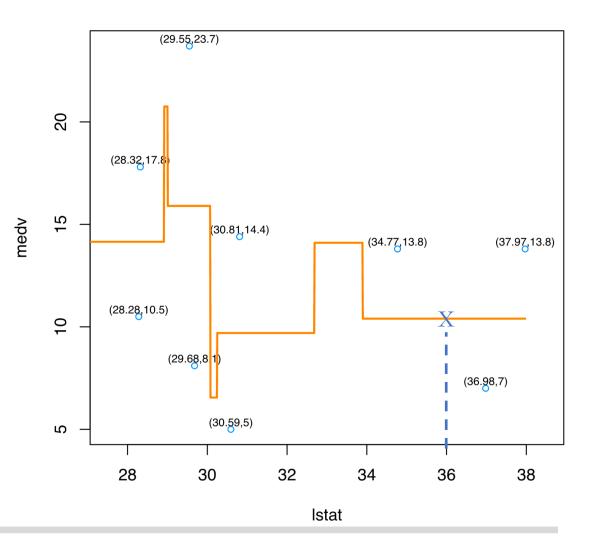
•
$$\hat{f}(x_0 = 32) = \frac{5+14.4}{2}$$



Prediction at
$$x_0 = 36$$
 ($K = 2$)

- $x_0 = 36$
- $N_K(x_0) = \{34.77, 36.98\}$

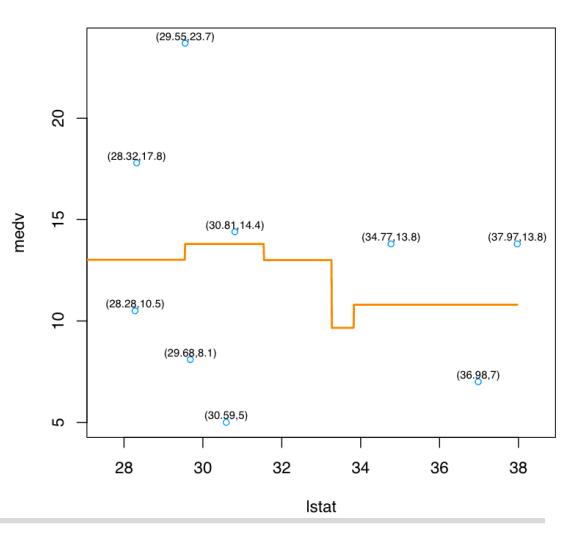
•
$$\hat{f}(x_0 = 36) = \frac{13.8+7}{2}$$



Example: 5-nearest neighbor regression

k = 5

- $\hat{f}(x_0)$ equals to the average of responses of x_0 's 5 nearest neighbors
- $\hat{f}(x_0)$ is smoother as K increases

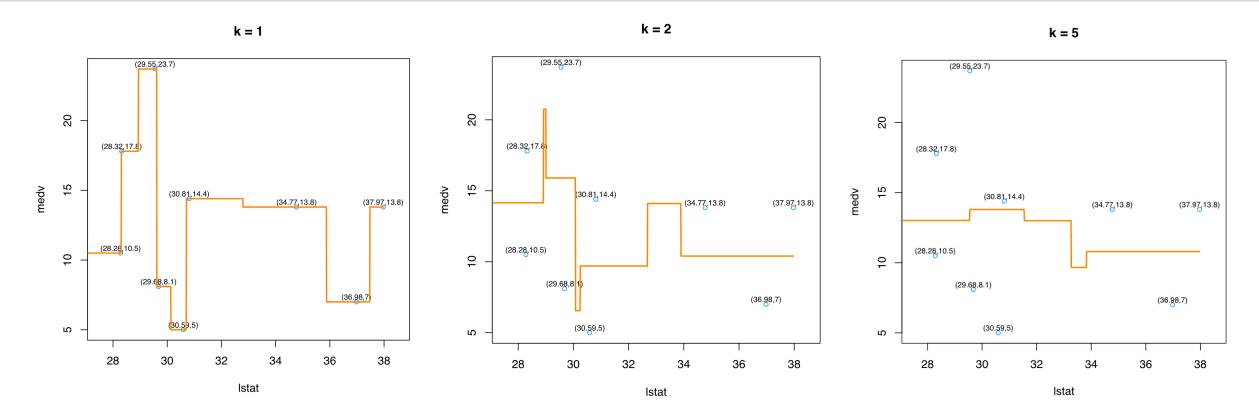


Prediction at
$$x_0 = 36$$
 ($K = 5$)

k = 5

• $x_0 = 36$ (29.55,23.7) 20 • $N_K(x_0) =$ (28.32,17.8) {30.59,30.81,34.77,36.98,37.97} medv 15 (30.81,14.4) (34.77,13.8) (37.97,13.8) • $\hat{f}(x_0 = 36) = \frac{5+14.4+13.8+7+13.8}{5+14.4+13.8+7+13.8}$ (28.28,10.5) 5 $\mathbf{\Lambda}$ 9 (29.68,8.1) (36.98,7) (30.59,5) ß 28 30 32 34 36 38 lstat

 $\hat{f}(x_0)$ is smoother for a larger K

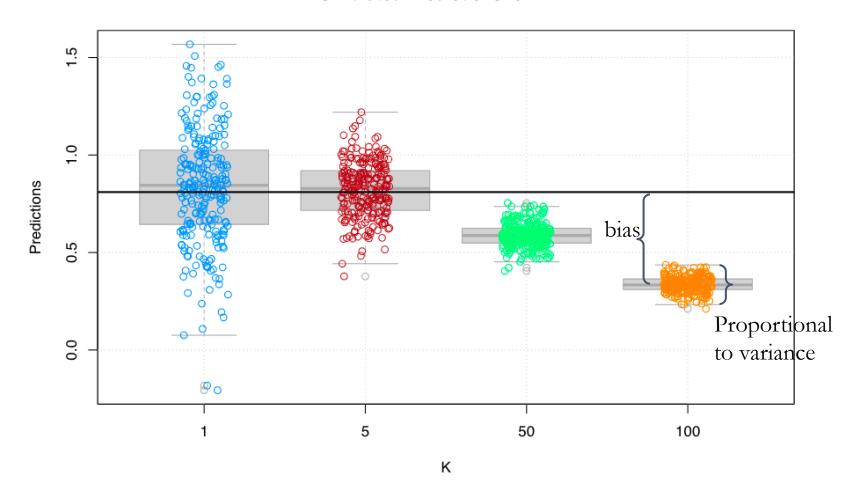


• Question: Is the model more flexible or less flexible for a larger K?

Bias-variance tradeoff for the optimal

- Train a KNN model to learn the true function $f(x) = x^2$ (x is a scalar)
- $x_0 = 0.9$
- The truth, $f(x_0 = 0.9) = x_0^2 = 0.81$
- We have 250 datasets
- For each dataset, we fit KNN with K =1, 5, 50, 100, and plot $\hat{f}(x_0 = 0.9)$

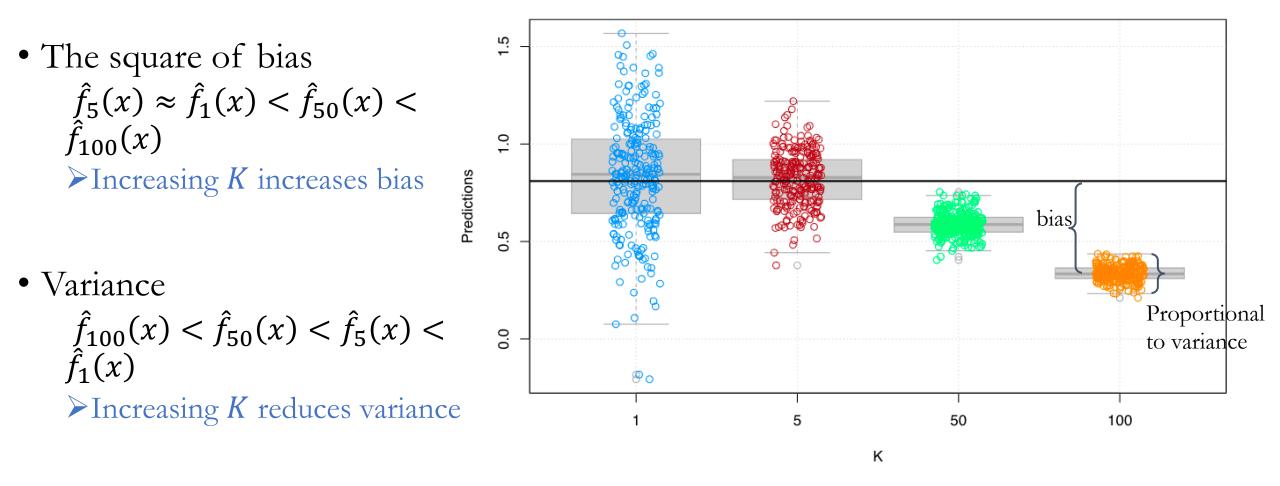
1/28/25



Simulated Predictions for KNN

Bias-variance tradeoff for the optimal

Simulated Predictions for KNN

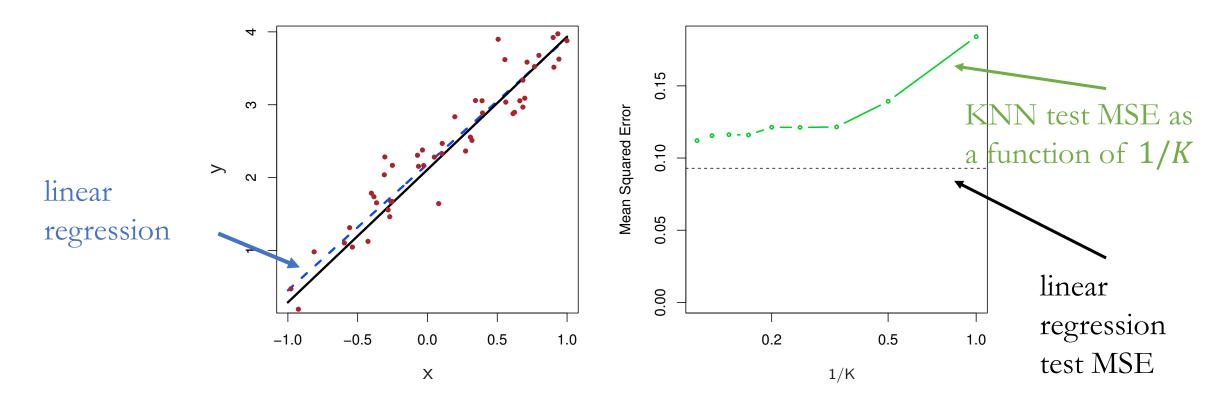


Linear regression vs K-nearest neighbors

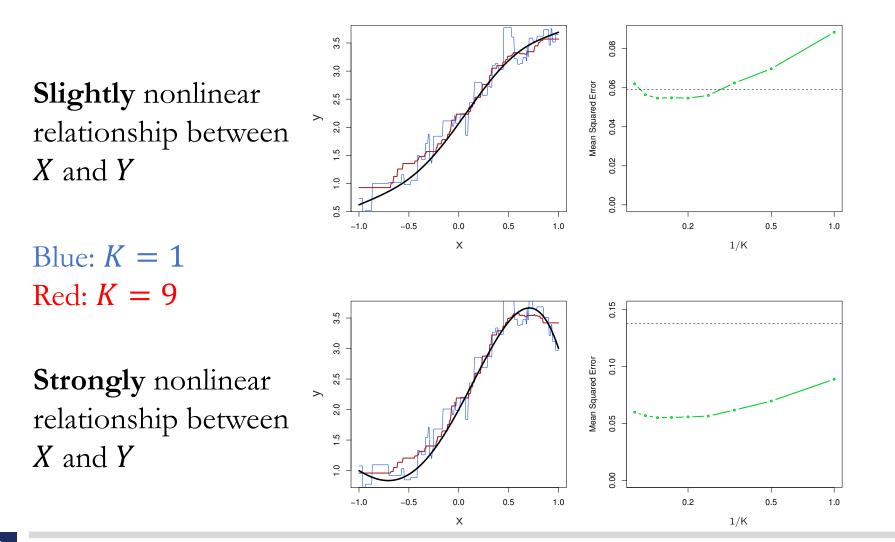
- KNN is only better when the function *f* is far from linear (in which case linear model is *misspecified*)
- When n is not much larger than p, even if f is nonlinear, linear regression can outperform KNN
- KNN has smaller bias, but this comes at a price of higher variance

Linear models can dominate KNN

• Truth is linear, plot of test MSE vs. 1/K shows KNN worse than linear regression.



Increasing deviations from linearity



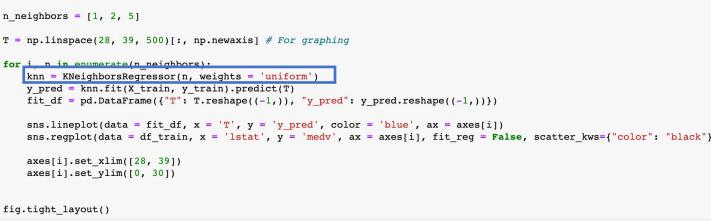
K-nearest neighbors regression in Python

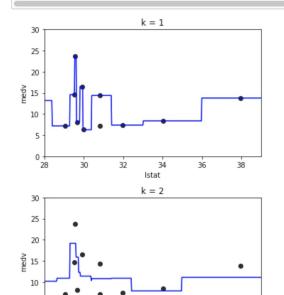
In [3]: from sklearn.neighbors import KNeighborsRegressor import pandas as pd import seaborn as sns

In [4]: df train = pd.DataFrame({'lstat': X train.reshape(-1,), 'medv': y train.reshape(-1,)})

fig, axes = plt.subplots(3, 1, figsize = (5,10))

Alternatively, weights = 'distance', where weight points by the inverse of their distance





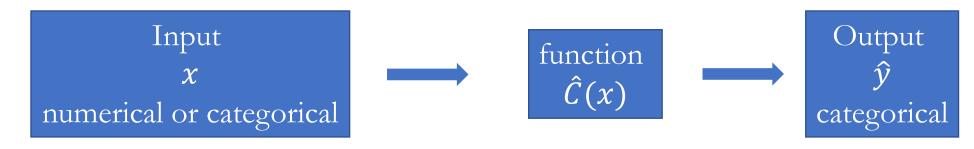
Lecture plan

• K-nearest neighbors (KNN) regression

• K-nearest neighbors (KNN) classification

Classification problem

- Classification is a form of supervised machine learning
- The response variable Y is categorical, as opposed to numerical for regression
- Our goal is to find a function C which takes feature(s), x, as input, and outputs a category which is the same as the true category as frequently as possible



K-nearest neighbors classification

- Given a value for K and a prediction point x_0
 - The predicted probability of class g is the fraction of responses of K nearest neighbors in class g

$$\widehat{P}(Y = g | X = x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} 1(y_i = g)$$

- $1(\cdot)$: indicator function
- $N_K(x_0)$ is the set of K training observations that are closest to x_0
- The predicted class is the class with maximum predicted probability

$$\hat{C}(x_0) = \operatorname{argmax}_g \hat{P}(Y = g | X = x)$$

K-nearest neighbors classification

- Given a value for K and a prediction point x_0
 - The predicted probability of class g is the fraction of responses of K nearest neighbors in class g

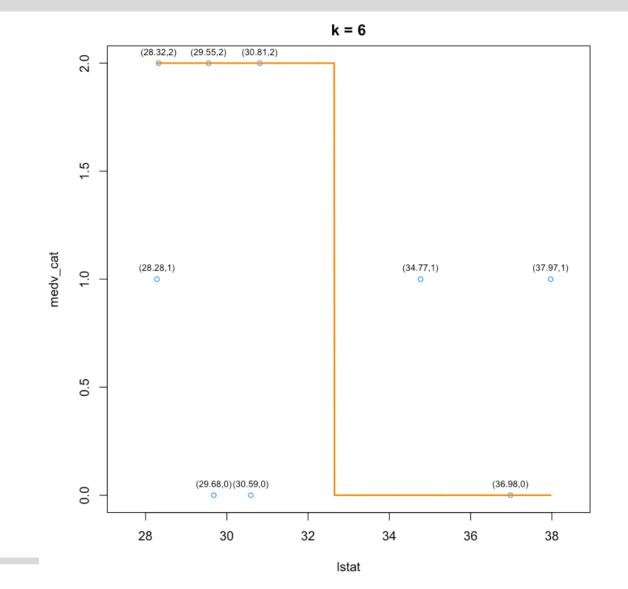
$$\widehat{P}(Y = g | X = x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} 1(y_i = g)$$

- $1(\cdot)$: indicator function
- $N_K(x_0)$ is the set of K training observations that are closest to x_0
- The predicted class is the class with maximum predicted probability

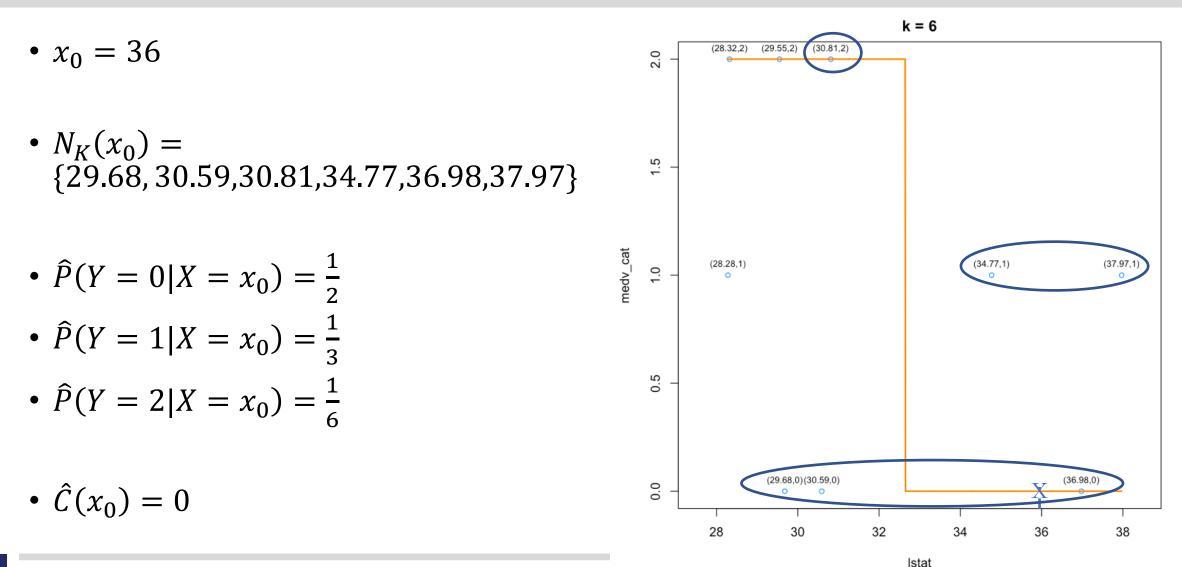
$$\hat{C}(x_0) = \operatorname{argmax}_g \hat{P}(Y = g | X = x)$$

Example: 6-nearest neighbors classification

- Prediction of the category of median house value (0: low, 1: medium, 2: high) given the percentage of households with low socioeconomic status (lstat)
- Orange curve: $\hat{C}(x_0)$



Example: 6-nearest neighbors classification



K-nearest neighbors classification in Python

KNN as classification problem

In [6]: from sklearn.neighbors import KNeighborsClassifier

In [7]: df = load_data("Boston")

X_train, X_test, y_train, y_test = train_test_split(df[['lstat']], df[['medv']], train_size=250, random_state=42) # We

X_train = X_train.to_numpy()
y_train = y_train.to_numpy()
y_train_cat = (y_train >= 14) * 2 + ((y_train < 14) * (y_train >= 10)) * 1

```
y_train_cat = y_train_cat.reshape((-1,))
```

In [8]: df_train = pd.DataFrame({'lstat': X_train.reshape(-1,), 'medv': y_train_cat.reshape(-1,)})

```
T = np.linspace(28, 39, 500)[:, np.newaxis] # For graphing
n = 2
knn = KNeighborsClassifier(n, weights = 'uniform')
y_pred = Knn.flt(X_train, y_train_cat).predict(T)
fit_df = pd.DataFrame({'T': T.reshape((-1,)), 'y_pred': y_pred.reshape((-1,))})
sns.lineplot(data = fit_df, x = 'T', y = 'y_pred', color = 'blue')
sns.regplot(data = df_train, x = 'lstat', y = 'medv', fit_reg = False, scatter_kws={"color": "black"}).set(title = f'k
plt.xlim([28, 39])
plt.show()
```

