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QTM 347 Machine Learning

Lecture 3: KNN



Lecture plan
• 𝐾-nearest neighbors (KNN) regression

• 𝐾-nearest neighbors (KNN) classification
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𝐾-nearest neighbors regression
• A non-parametric approach

• 𝐾 is a user-defined constant
• 𝐾 is an integer, e.g., 1,2,3,⋯

• Given a value for 𝐾 and a prediction point 𝑥!, #𝑓 𝑥!  is the average of  
the responses of  𝐾 nearest neighbors

'𝑓 𝑥! =
1
𝐾

+
"!∈$"("#)

𝑦'

• 𝑁((𝑥!) is the set of  𝐾 training observations that are closest to 𝑥!
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Example: 1-nearest neighbor regression

• Prediction of  the median house 
value of  a neighbor given the 
percentage of  households with 
low socioeconomic status (lstat)

• Orange curve: #𝑓 𝑥!
• '𝑓 𝑥!  equals to the response of  
𝑥!’s nearest neighbor
• '𝑓 𝑥!  is a step function
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Prediction at 𝑥" = 32 (𝐾 = 1)

• 𝑥! = 32

• 𝑁" 𝑥! = {30.81}

• #𝑓 𝑥! = 32 = 14.4
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Now let us understand why '𝑓 𝑥"  is a step function

• 𝑥! = 32.79
• It is a switching point!

• 𝑁" 𝑥! = 30.81 	or	
𝑁" 𝑥! = 34.77
• Note that 32.79 − 30.81 =
1.98 = 34.77 − 32.79

• #𝑓 𝑥! = 32.79 = 14.4 or 
#𝑓 𝑥! = 32.79 = 13.8 
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Prediction at 𝑥" = 33 (𝐾 = 1)

• 𝑥! = 33

• 𝑁" 𝑥! = 34.77
• Note that 34.77 − 33 = 1.77 <
33 − 30.81 = 2.19

• #𝑓 𝑥! = 33 = 13.8 
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Prediction at 𝑥" = 34 (𝐾 = 1)

• 𝑥! = 34

• 𝑁" 𝑥! = 34.77

• #𝑓 𝑥! = 34 = 13.8 
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Prediction at 𝑥" = 36 (𝐾 = 1)

• 𝑥! = 36

• 𝑁" 𝑥! = {36.98}

• #𝑓 𝑥! = 36 = 7
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Example: 2-nearest neighbor regression

• #𝑓 𝑥!  equals to the average of  
responses of  𝑥!’s 2 nearest 
neighbors
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Prediction at 𝑥" = 32 (𝐾 = 2)

• 𝑥! = 32

• 𝑁" 𝑥! = {30.59,30.81}

• #𝑓 𝑥! = 32 = #$%&.&
(
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Prediction at 𝑥" = 36 (𝐾 = 2)

• 𝑥! = 36

• 𝑁" 𝑥! = {34.77,36.98}

• #𝑓 𝑥! = 36 = %).*$+
(
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Example: 5-nearest neighbor regression 

• #𝑓 𝑥!  equals to the average of  
responses of  𝑥!’s 5 nearest 
neighbors

• #𝑓 𝑥!  is smoother as 𝐾 increases
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Prediction at 𝑥" = 36 (𝐾 = 5)

• 𝑥! = 36

• 𝑁" 𝑥! =
{30.59,30.81,34.77,36.98,37.97}

• #𝑓 𝑥! = 36 = #$%&.&$%).*$+$%).*
#
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'𝑓 𝑥"  is smoother for a larger 𝐾

• Question: Is the model more flexible or less flexible for a larger 𝐾?
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Bias-variance tradeoff  for the optimal  
• Train a KNN model to 

learn the true function 
𝑓 𝑥 = 𝑥! (𝑥 is a scalar)

• 𝑥" = 0.9
• The truth, 𝑓 𝑥" = 0.9 =
𝑥"! = 0.81
• We have 250 datasets
• For each dataset, we fit 

KNN with 𝐾 =
1, 5, 50, 100, and plot 
-𝑓(𝑥" = 0.9)
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Bias-variance tradeoff  for the optimal  
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bias

Proportional 
to variance

• The square of  bias
 '𝑓) 𝑥 ≈ '𝑓* 𝑥 < '𝑓)! 𝑥 <
'𝑓*!! 𝑥
ØIncreasing 𝐾 increases bias

• Variance
 '𝑓*!! 𝑥 < '𝑓)! 𝑥 < '𝑓) 𝑥 <
'𝑓* 𝑥
ØIncreasing 𝐾 reduces variance



Linear regression vs 𝐾-nearest neighbors 
• KNN is only better when the function 𝑓 is far from linear (in which case 

linear model is misspecified)

• When 𝑛 is not much larger than 𝑝, even if  𝑓 is nonlinear, linear 
regression can outperform KNN

• KNN has smaller bias, but this comes at a price of  higher variance
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Linear models can dominate KNN
• Truth is linear, plot of  test MSE vs. 1/𝐾 shows KNN worse than linear 

regression.
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Increasing deviations from linearity
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𝐾-nearest neighbors regression in Python
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Alternatively, 
weights = ‘distance’, 
where weight points 
by the inverse of  
their distance



Lecture plan
• 𝐾-nearest neighbors (KNN) regression

• 𝐾-nearest neighbors (KNN) classification
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Classification problem
• Classification is a form of  supervised machine learning

• The response variable 𝑌 is categorical, as opposed to numerical for 
regression

• Our goal is to find a function 𝐶 which takes feature(s), 𝑥, as input, and 
outputs a category which is the same as the true category as frequently as 
possible
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Input 
𝑥

numerical or categorical

function 
'𝐶(𝑥)

Output 
=𝑦

categorical



𝐾-nearest neighbors classification
• Given a value for 𝐾 and a prediction point 𝑥! 
• The predicted probability of  class 𝑔 is the fraction of  responses of  𝐾 nearest 

neighbors in class 𝑔

,𝑃 𝑌 = 𝑔|𝑋 = 𝑥! =
1
𝐾

6
"!∈$"("#)

1(𝑦' = 𝑔)

• 1(⋅): indicator function 
• 𝑁((𝑥!) is the set of  𝐾 training observations that are closest to 𝑥!

• The predicted class is the class with maximum predicted probability

<𝐶 𝑥! = argmax) ,𝑃(𝑌 = 𝑔|𝑋 = 𝑥)
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𝐾-nearest neighbors classification
• Given a value for 𝐾 and a prediction point 𝑥! 
• The predicted probability of  class 𝑔 is the fraction of  responses of  𝐾 nearest 

neighbors in class 𝑔

,𝑃 𝑌 = 𝑔|𝑋 = 𝑥! =
1
𝐾

6
"!∈$"("#)

1(𝑦' = 𝑔)

• 1(⋅): indicator function 
• 𝑁((𝑥!) is the set of  𝐾 training observations that are closest to 𝑥!

• The predicted class is the class with maximum predicted probability

<𝐶 𝑥! = argmax) ,𝑃(𝑌 = 𝑔|𝑋 = 𝑥)
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Example: 6-nearest neighbors classification
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• Prediction of  the category of  
median house value (0: low, 1: 
medium, 2: high) given the 
percentage of  households with low 
socioeconomic status (lstat)

• Orange curve: #𝐶 𝑥!



Example: 6-nearest neighbors classification
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• 𝑥! = 36

• 𝑁( 𝑥! =
{29.68, 30.59,30.81,34.77,36.98,37.97}

• C𝑃 𝑌 = 0|𝑋 = 𝑥! = *
+

• C𝑃 𝑌 = 1|𝑋 = 𝑥! = *
,

• C𝑃 𝑌 = 2|𝑋 = 𝑥! = *
-

• '𝐶 𝑥! = 0 X



𝐾-nearest neighbors classification in Python
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