QTM 347 Machine Learning

Lecture 2: Bias-variance decomposition

Ruoxuan Xiong Suggested reading: ISL Chapter 2

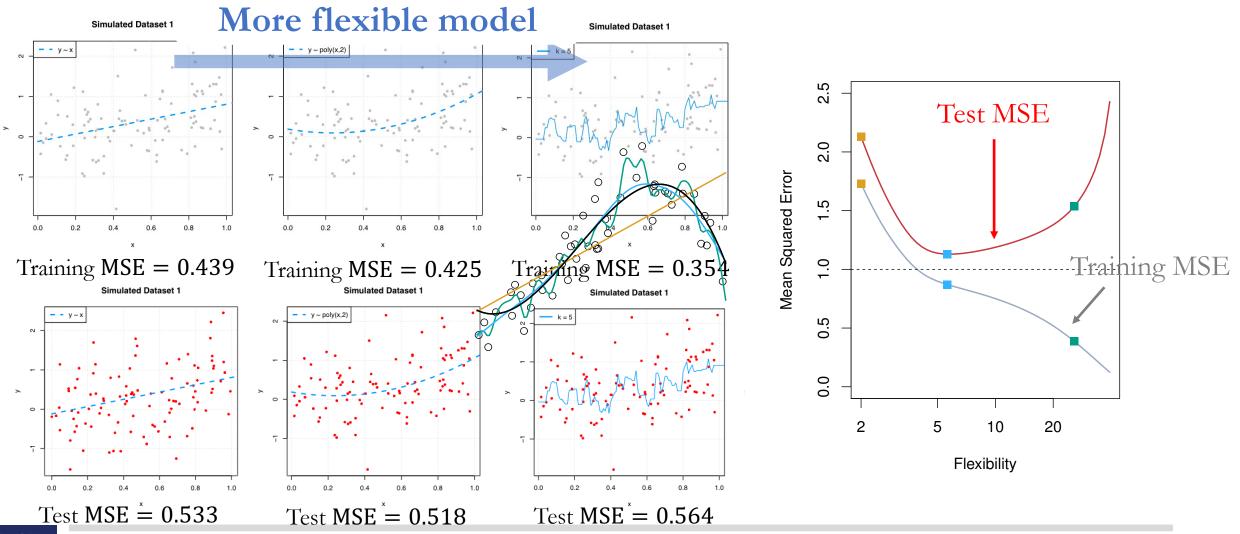
Lecture plan

• Bias-variance decomposition for regression problems (MSE)

Training/Test data and training/test MSE

- Training data: the data, (X_1, Y_1) , (X_2, Y_2) , \cdots , (X_n, Y_n) , that are used to fit f
- Training MSE: $MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i \hat{f}(X_i))^2$
- Test data: the data, $(X'_1, Y'_1), (X'_2, Y'_2), \dots, (X'_m, Y'_m)$, that are previous unseen and not used to fit f
- Test MSE: MSE = $\frac{1}{m} \sum_{i=1}^{m} (Y'_i \hat{f}(X'_i))^2$
- We care test MSE more than training MSE
- However, a low training MSE does not imply a low test MSE...

MSE varies with model flexibility

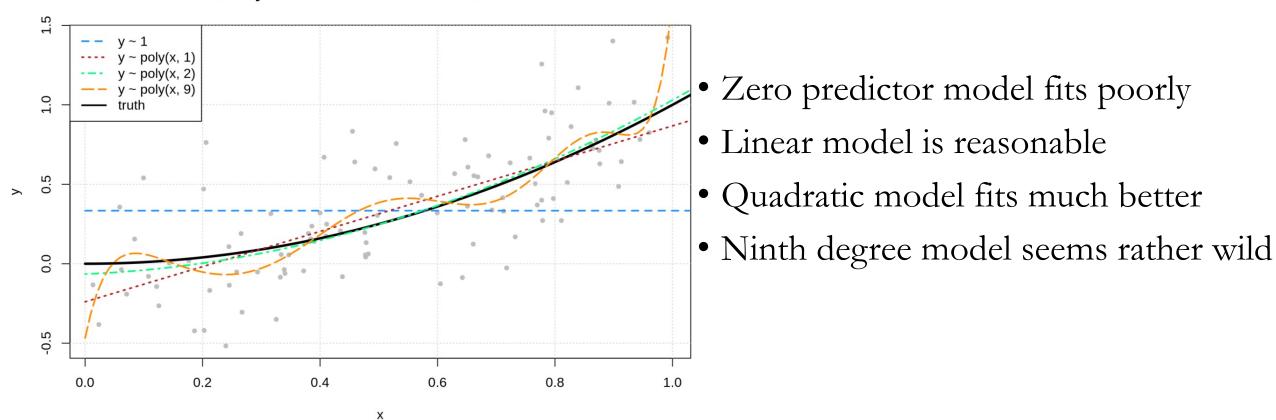


1/28/25

From now on, let us study why MSE varies with model flexibility

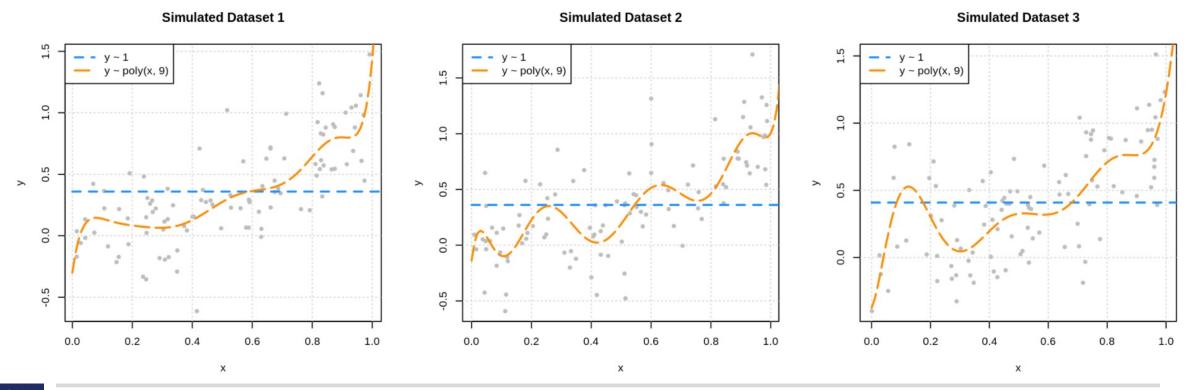
- Suppose the *true regression function* is $f(x) = x^2$ (x is a scalar)
- We consider *training the following models* to learn this function
 - A constant function: $\hat{f}_0(x) = \hat{\beta}_0$
 - A linear function: $\hat{f}_1(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1$
 - A quadratic function: $\hat{f}_2(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + x^2 \cdot \hat{\beta}_2$
 - A ninth degree polynomial function: $\hat{f}_9(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + \dots + x^9 \cdot \hat{\beta}_9$
 - The model is *more flexible* if the *polynomial degree is larger*

Four fitted models



If we fit models on three additional datasets

- In general, the fitted model depends on the training data
- The zero predictor $\hat{f}_0(x)$ slightly varies, but the ninth-degree polynomial varies $\hat{f}_9(x)$ quite a bit
- We call this the variance of a model: the variance of $\hat{f}_0(x)$ is smaller than the variance of $\hat{f}_9(x)$

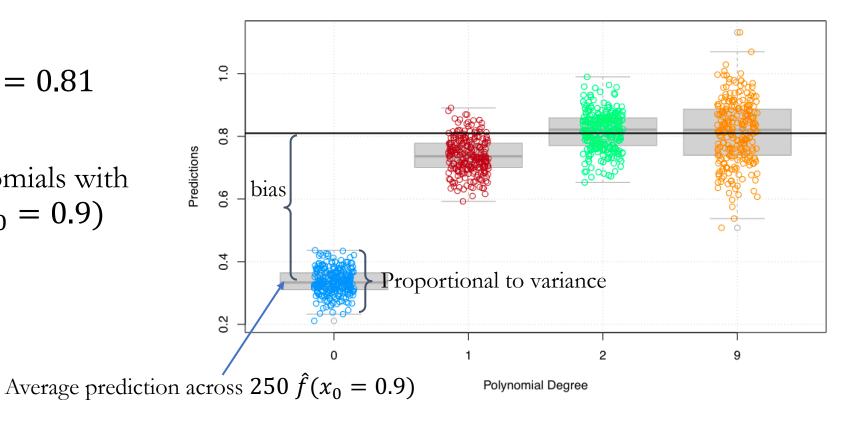


Suppose we are interested in predicting $f(x_0)$

- Test point: $x_0 = 0.9$
- The truth, $f(x_0 = 0.9) = x_0^2 = 0.81$
- We have 250 datasets

1/28/25

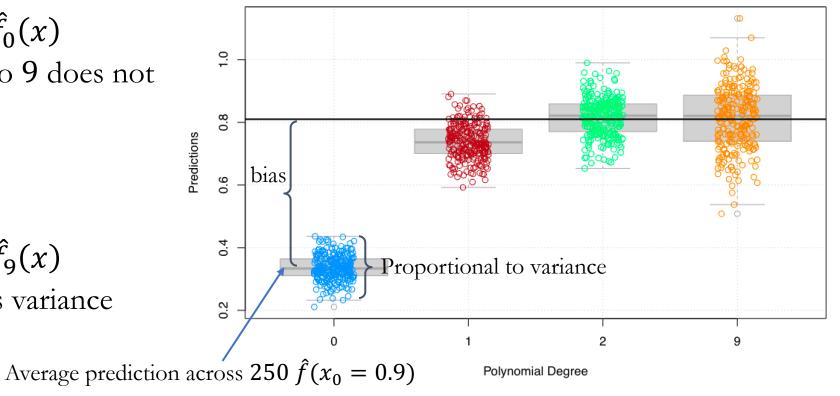
• For each dataset, we fit polynomials with degree 0, 1, 2, 9, and plot $\hat{f}(x_0 = 0.9)$



Simulated Predictions for Polynomial Models

Suppose we are interested in predicting $f(x_0)$

Simulated Predictions for Polynomial Models



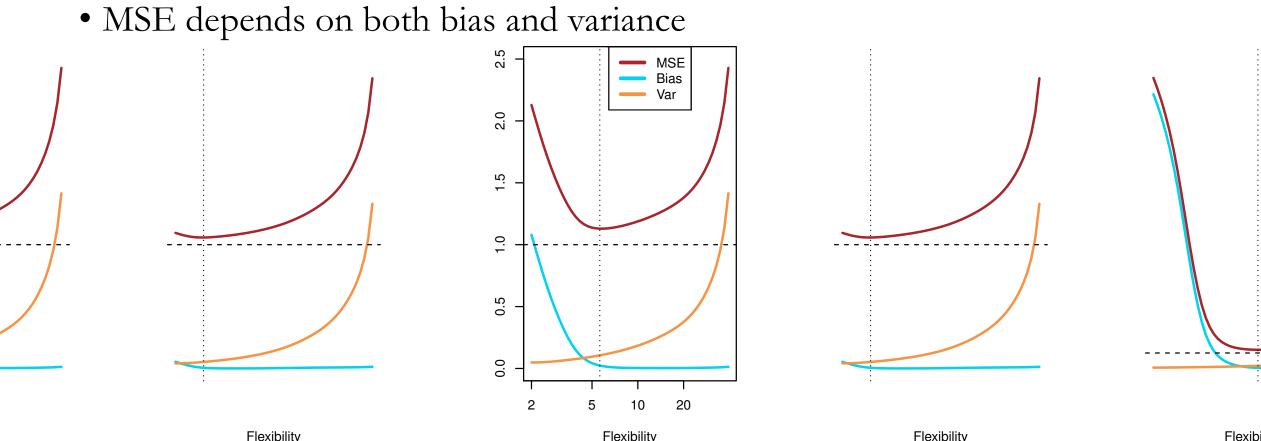
• Variance

 $\hat{f}_0(x) < \hat{f}_1(x) < \hat{f}_2(x) < \hat{f}_9(x)$

➢Increasing degree increases variance

EMORY

Combining bias and variance



- MSE can be decomposed into variance plus the square of bias
- Next we show how...

Let us analyze MSE

- Suppose the true function is f
- The response follows $Y = f(X) + \varepsilon$, with $E[\varepsilon] = 0$
- For notation simplicity, let $\mathcal{D} = \{(X_1, Y_1), (X_2, Y_2), \cdots, (X_n, Y_n)\}$ be the training data
- \hat{f} depends on \mathcal{D}
 - If we change the training data \mathcal{D} , we get a different estimate \hat{f}
- Let x_0 be a fixed test point. The MSE at x_0 can be decomposed as

$$MSE(x_0) = E_{Y|X,\mathcal{D}} \left[\left(Y - \hat{f}(X) \right)^2 \mid X = x_0 \right] = E_{\mathcal{D}} \left[\left(f(x_0) - \hat{f}(x_0) \right)^2 \right] + V_{Y|X} [Y \mid X = x_0]$$

Expected value over \mathcal{D} and $Y|X$
Reducible error
Irreducible error

Decomposition of MSE

• The MSE at x_0 can be decomposed as

$$MSE(x_0) = \underbrace{E_{Y|X,\mathcal{D}}}_{\text{Expected value over }Y|X \text{ and }\mathcal{D}} \begin{bmatrix} \left(Y - \hat{f}(X)\right)^2 \mid X = x_0 \end{bmatrix} = \underbrace{E_{\mathcal{D}}}_{\text{Reducible error}} \begin{bmatrix} \left(f(x_0) - \hat{f}(x_0)\right)^2 \end{bmatrix} + \underbrace{V_{Y|X}}_{\text{Y|X}} \begin{bmatrix} Y \mid X = x_0 \end{bmatrix}$$

Irreducible error

- MSE at x_0 is also called the expected prediction error for a random Y given a fixed $X = x_0$ and a random \hat{f}
- Two sources of *randomness*:
 - Given that $X = x_0$, Y is random because $Y = f(X) + \varepsilon$ and ε is random
 - \hat{f} is random because it depends on (randomly sampled) training data \mathcal{D}

Irreducible error

• The MSE at x_0 can be decomposed as

$$MSE(x_0) = \underbrace{E_{Y|X,\mathcal{D}}}_{\text{Expected value over }Y|X \text{ and }\mathcal{D}} \begin{bmatrix} \left(Y - \hat{f}(X)\right)^2 \mid X = x_0 \end{bmatrix} = \underbrace{E_{\mathcal{D}}}_{\text{Reducible error}} \begin{bmatrix} \left(f(x_0) - \hat{f}(x_0)\right)^2 \end{bmatrix} + \underbrace{V_{Y|X}}_{\text{Y|X}} \begin{bmatrix} Y \mid X = x_0 \end{bmatrix}$$

Irreducible error

- Irreducible error: the variance of Y given that $X = x_0$
 - If $Y = f(X) + \varepsilon$ with $\mathbb{E}[\varepsilon] = 0$ and $\mathbb{V}[\varepsilon] = \sigma_{\varepsilon}^2$, then $V_{Y|X}[Y \mid X = x_0] = \sigma_{\varepsilon}^2$
 - Irreducible error can not be reduced for any \hat{f}

Reducible error

• The MSE at x_0 can be decomposed as

$$MSE(x_0) = E_{Y|X,\mathcal{D}} \left[\left(Y - \hat{f}(X) \right)^2 \mid X = x_0 \right] = E_{\mathcal{D}} \left[\left(f(x_0) - \hat{f}(x_0) \right)^2 \right] + V_{Y|X} [Y \mid X = x_0]$$

Expected value over $Y|X$ and \mathcal{D}
Reducible error Irreducible error

- Reducible error: the expected squared error by using $\hat{f}(x_0)$ to estimate $f(x_0)$
 - The only thing that is random is \mathcal{D} , the training data used to obtain \hat{f} (both f and x_0 are fixed)
 - Reducible error can be reduced by using a better \hat{f}

Bias-variance decomposition of reducible error

• Reducible error can be decomposed as the squared bias and variance

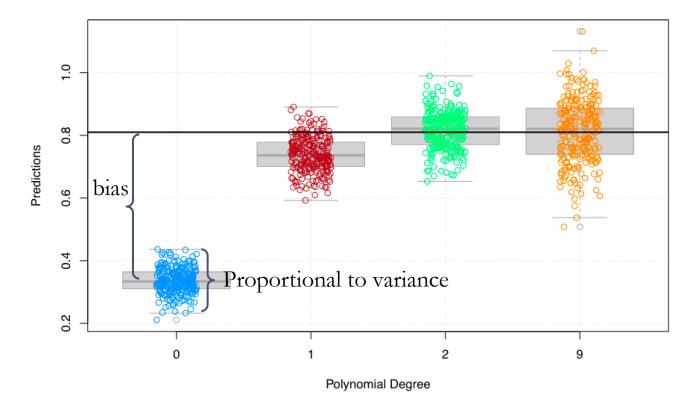
$$E_{\mathcal{D}}\left[\left(f(x_{0}) - \hat{f}(x_{0})\right)^{2}\right] = \left(f(x_{0}) - E_{\mathcal{D}}[\hat{f}(x_{0})]\right)^{2} + E_{\mathcal{D}}\left[\left(\hat{f}(x_{0}) - E_{\mathcal{D}}[\hat{f}(x_{0})]\right)^{2}\right]$$

bias²($\hat{f}(x_{0})$)
var($\hat{f}(x_{0})$)

- Take home exercise: Prove this decomposition
- Hint: Use the property $E_{\mathcal{D}}\left[\left(f(x_{0}) - \hat{f}(x_{0})\right)^{2}\right] = E_{\mathcal{D}}\left[\left(f(x_{0}) - E_{\mathcal{D}}[\hat{f}(x_{0})] + E_{\mathcal{D}}[\hat{f}(x_{0})] - \hat{f}(x_{0})\right)^{2}\right]$ $E_{\mathcal{D}}[(A + B)^{2}] = A^{2} + 2AE_{\mathcal{D}}[B] + E_{\mathcal{D}}[B^{2}] = A^{2} + E_{\mathcal{D}}[B^{2}]$ $(A \text{ is nonrandom and } E_{\mathcal{D}}[A^{2}] = A^{2})$

Recall our toy example

Simulated Predictions for Polynomial Models



Summing up the decomposition

• The MSE at x_0 can be decomposed as



Irreducible error

Visualization of bias-variance decomposition

