#### QTM 347: Machine Learning

#### Lecture 1: Preliminaries in machine learning

Ruoxuan Xiong



## Lecture plan

- Preliminaries in machine learning
  - Parametric and nonparametric methods
  - Training/test data and training/test MSE



# Supervised and unsupervised machine learning

- Supervised machine learning (main focus of this course)
  - Data:  $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ 
    - X<sub>i</sub>: predictors
    - *Y<sub>i</sub>*: response
  - Task: Fit a model that relates response to predictors
    - E.g., linear regression or logistic regression model from your regression analysis class
    - You will learn many more in this course
- Unsupervised machine learning
  - **Data**:  $X_1, X_2, \dots, X_n$
  - Task: Understand the relationships between variables/observations



## Supervised machine learning

- Illustrative example: Prediction of housing values in suburbs of Boston
- Training dataset: given a training dataset that contains *n* samples

 $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ 

- $X_i$  is a feature vector
- $Y_i$  is a label
- Supervised machine learning finds a function f that maps X to Y
  - $Y = f(X) + \varepsilon$ , where  $\varepsilon$  has mean 0
  - f can be quite general, but is **unknown**



Simulated Dataset 1 Simulated Dataset 1 V~X 0.8 0.8  $\geq$  $\sim$ 0.4 0.4 0.0 0.0 0.8 0.6 0.0 0.2 0.4 0.6 1.0 0.0 0.2 0.4 0.8 1.0 Х Х

 $Y = \beta_0 + X \cdot \beta_1 + \varepsilon$ 

- Supervised machine learning: How do we estimate f?
  - Supervised machine learning finds a function f that maps X to Y
  - We may first look at the scatterplot for the exploratory analysis

**EMORY** 

**EMORY** 

 $\sim$ 

#### Simulated Dataset 2 --- y ~ poly(x,2)

# Supervised machine learning: How do we estimate f?

- Supervised machine learning finds a function f that maps X to Y
- We may first look at the scatterplot for the exploratory analysis



#### Parametric methods

- We assume that f takes a specific form. For example,
  - $Y = \beta_0 + X \cdot \beta_1 + \varepsilon$
  - $Y = \beta_0 + X \cdot \beta_1 + X^2 \cdot \beta_2 + \varepsilon$
- We use the training data,  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ ,  $\cdots$ ,  $(X_n, Y_n)$ , to *fit* the parameters



## A more complicated case...

• From the scatterplot, which *f* should we choose?





### Nonparametric methods

- We don't make any assumptions on the form of f, but we restrict how "rough" the function can be
  - For example, k-nearest neighbors (KNN)



**EMORY** 

### Parametric vs nonparametric methods

- **Parametric methods** are often simpler to interpret, but strongly rely on assumptions and can be less flexible to capture complex data patterns
- Nonparametric methods rely on fewer assumptions, are flexible and suitable for large datasets







## In practice, which model we should use?

- Linear model, quadratic model, nonparametric model, or some other model?
- We need an evaluation metric...
- From the regression analysis class, we could use  $R^2$  (goodness of fit)
  - $R^2 = 1 \frac{\sum_i (Y_i \hat{Y}_i)^2}{\sum_i (Y_i \bar{Y})^2}$
  - $\hat{Y}_i$  is the fitted  $Y_i$  and  $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ 
    - In linear regression,  $\hat{Y}_i = \hat{\beta}_0 + X_i \cdot \hat{\beta}_1$
    - For a more general fitted function  $\hat{f}$  (e.g., quadratic),  $\hat{Y}_i = \hat{f}(X_i)$
  - Interpretation of  $R^2$ : Fraction of the variance of  $Y_i$  captured by  $\hat{f}(X_i)$ . The larger the  $R^2$ , the better  $\hat{Y}_i$  fits  $Y_i$
  - Quiz: Can  $\mathbb{R}^2$  be less than zero? Can  $\mathbb{R}^2$  be larger than one?



Example of  $R^2$ 





### Mean-squared error (MSE)

- MSE and RMSE are commonly used in machine learning • MSE =  $\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{f}(X_i))^2$ 
  - MSE  $\geq 0$
  - If  $\hat{f}(X_i)$  is very close to  $Y_i$  for all i, then MSE would be small

• 
$$R^2 = 1 - \frac{\sum_i (Y_i - \hat{Y}_i)^2}{\sum_i (Y_i - \bar{Y})^2}$$
 is the standardized version of MSE

• Root Mean-Squared Error (RMSE) is  $\sqrt{MSE}$ 



#### MSE and RMSE





# MSE, RMSE and $R^2$

- Given the training data,  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ ,  $\cdots$ ,  $(X_n, Y_n)$ , there is a one-toone mapping between MSE, RMSE and  $R^2$
- When is each metric used?
- MSE: (a) used in model training because it is mathematically simpler and differentiable; (b) used in theoretical analysis
- **RMSE**: Used in performance reporting because it reflects error in original data scale
- **R**<sup>2</sup>: A scale-independent metric, used when audience is familiar with "percentage of variance explained"



# One-to-one mapping between MSE, RMSE and $R^2$





# Scaling of MSE, RMSE and $R^2$





2.0



#### Which model to use for prediction?

- Suppose we have *m* new units
  - Their predictors are  $X'_1, X'_2, \dots, X'_m$
  - We want to predict the outcome of these m units
  - Quiz: Which model should we use? Shall we choose the one with minimum MSE?





#### Which model to use for prediction?

- Suppose we have *m* new units
  - Their predictors are  $X'_1, X'_2, \dots, X'_m$
  - The fitted outcomes are  $\hat{Y}'_1, \hat{Y}'_2, \dots, \hat{Y}'_m$
- Suppose we are clairvoyants, and know the true outcome  $Y'_1, Y'_2, \dots, Y'_m$ 
  - We can calculate MSE =  $\frac{1}{m}\sum_{i=1}^{m}(Y'_i \hat{f}(X'_i))^2$





## A low training MSE does not imply a low test MSE...





#### MSE varies with model flexibility



