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Lecture 1: Preliminaries in machine learning
Ruoxuan Xiong



Lecture plan
• Preliminaries in machine learning
• Parametric and nonparametric methods
• Training/test data and training/test MSE
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Supervised and unsupervised machine learning
• Supervised machine learning (main focus of  this course)
• Data: 𝑋!, 𝑌! , 𝑋", 𝑌" , ⋯, 𝑋#, 𝑌#

• 𝑋!: predictors
• 𝑌!: response

• Task: Fit a model that relates response to predictors
• E.g., linear regression or logistic regression model from your regression analysis class
• You will learn many more in this course

• Unsupervised machine learning
• Data: 𝑋!, 𝑋", ⋯, 𝑋#
• Task: Understand the relationships between variables/observations
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Supervised machine learning 
• Illustrative example: Prediction of  housing values in suburbs of  Boston

• Training dataset: given a training dataset that contains 𝑛 samples

𝑋!, 𝑌! , 𝑋", 𝑌" , ⋯ , 𝑋#, 𝑌#

• 𝑋$ is a feature vector
• 𝑌$ is a label

• Supervised machine learning finds a function 𝑓 that maps 𝑋 to 𝑌
• 𝑌 = 𝑓 𝑋 + 𝜀, where 𝜀 has mean 0
• 𝑓 can be quite general, but is unknown
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Supervised machine learning: How do we estimate 𝑓?
• Supervised machine learning finds a function 𝑓 that maps 𝑋 to 𝑌
• We may first look at the scatterplot for the exploratory analysis
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𝑌 = 𝛽! + 𝑋 ⋅ 𝛽" + 𝜀



Supervised machine learning: How do we estimate 𝑓?
• Supervised machine learning finds a function 𝑓 that maps 𝑋 to 𝑌
• We may first look at the scatterplot for the exploratory analysis
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𝑌 = 𝛽! + 𝑋 ⋅ 𝛽" + 𝑋# ⋅ 𝛽# + 𝜀



Parametric methods
• We assume that 𝑓 takes a specific form. For example,

• 𝑌 = 𝛽, + 𝑋 ⋅ 𝛽! + 𝜀
• 𝑌 = 𝛽, + 𝑋 ⋅ 𝛽! + 𝑋" ⋅ 𝛽" + 𝜀

• We use the training data, 𝑋#, 𝑌# , 𝑋$, 𝑌$ , ⋯ , 𝑋% , 𝑌% , to fit the parameters
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A more complicated case…
• From the scatterplot, which 𝑓 should we choose? 
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Nonparametric methods
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Roughest Smoothest 

• We don’t make any assumptions on the form of  𝑓, but we restrict how 
“rough” the function can be
• For example, 𝑘-nearest neighbors (KNN)



Parametric vs nonparametric methods
• Parametric methods are often simpler to interpret, but strongly rely on 

assumptions and can be less flexible to capture complex data patterns
• Nonparametric methods rely on fewer assumptions, are flexible and 

suitable for large datasets
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In practice, which model we should use?
• Linear model, quadratic model, nonparametric model, or some other model?

• We need an evaluation metric…

• From the regression analysis class, we could use 𝑅! (goodness of  fit)
• 𝑅! = 1 − ∑$ #$$%#$ %

∑$ #$$&# %

• %𝑌' is the fitted 𝑌' and '𝑌 = (
)
∑'*() 𝑌'

• In linear regression, "𝑌! = %𝛽" + 𝑋! ⋅ %𝛽# 
• For a more general fitted function %𝑓 (e.g., quadratic), "𝑌! = %𝑓(𝑋!)

• Interpretation of  𝑅!: Fraction of  the variance of  𝑌' captured by )𝑓 𝑋' . The larger the 𝑅!, 
the better %𝑌' fits 𝑌'

• Quiz: Can 𝑅! be less than zero? Can 𝑅! be larger than one? 
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Example of  𝑅!
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𝑅# = 0.138 𝑅# = 0.166 𝑅# = 0.305 𝑅# = 0.191 𝑅# = 0.158



Mean-squared error (MSE)
• MSE and RMSE are commonly used in machine learning
• MSE = !

#
∑$6!# (𝑌$ − 3𝑓(𝑋$))"

• MSE ≥ 0

• If  3𝑓(𝑋$) is very close to 𝑌$ for all 𝑖, then MSE would be small

• 𝑅" = 1 − ∑$ 8$9:8$ %

∑$ 8$9;8 %  is the standardized version of  MSE

• Root Mean-Squared Error (RMSE) is MSE
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MSE and RMSE
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MSE = 0.439
RMSE = 0.663

MSE = 0.425
RMSE = 0.652

MSE = 0.354
RMSE = 0.595

MSE = 0.412
RMSE = 0.642

MSE = 0.429
RMSE = 0.655



MSE, RMSE and 𝑅!
• Given the training data, 𝑋#, 𝑌# , 𝑋$, 𝑌$ , ⋯ , 𝑋% , 𝑌% , there is a one-to-

one mapping between MSE, RMSE and 𝑅$

• When is each metric used? 
• MSE: (a) used in model training because it is mathematically simpler and 

differentiable; (b) used in theoretical analysis

• RMSE: Used in performance reporting because it reflects error in 
original data scale 

• 𝑹𝟐: A scale-independent metric, used when audience is familiar with 
“percentage of  variance explained”
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One-to-one mapping between MSE, RMSE and 𝑅! 
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MSE = 0.439
RMSE = 0.663
𝑅# = 0.138

MSE = 0.425
RMSE = 0.652
𝑅# = 0.166

MSE = 0.354
RMSE = 0.595
𝑅# = 0.305

MSE = 0.412
RMSE = 0.642
𝑅# = 0.191

MSE = 0.429
RMSE = 0.655
𝑅# = 0.158



Scaling of  MSE, RMSE and 𝑅! 
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MSE = 0.439
RMSE = 0.663
𝑅# = 0.138

MSE = 1.756
RMSE = 1.325
𝑅# = 0.138

If  we multiply 𝑥& and 𝑦& by 2 



Which model to use for prediction?
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MSE = 0.439
RMSE = 0.663
𝑅# = 0.138

MSE = 0.425
RMSE = 0.652
𝑅# = 0.166

MSE = 0.354
RMSE = 0.595
𝑅# = 0.305

MSE = 0.412
RMSE = 0.642
𝑅# = 0.191

MSE = 0.429
RMSE = 0.655
𝑅# = 0.158

• Suppose we have 𝑚 new units
• Their predictors are 𝑋!E , 𝑋"E , ⋯, 𝑋FE
• We want to predict the outcome of  these 𝑚 units
• Quiz: Which model should we use? Shall we choose the one with minimum MSE?



Which model to use for prediction?
• Suppose we have 𝑚 new units
• Their predictors are 𝑋!E , 𝑋"E , ⋯, 𝑋FE
• The fitted outcomes are :𝑌!E, :𝑌"E, ⋯, :𝑌FE

• Suppose we are clairvoyants, and know the true outcome 𝑌#', 𝑌$', ⋯, 𝑌('

• We can calculate MSE = !
F
∑$6!F (𝑌$E − 3𝑓(𝑋$E))"
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MSE = 0.533 MSE = 0.518 MSE = 0.564 MSE = 0.507 MSE = 0.524



A low training MSE does not imply a low test MSE…
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• This is the main challenge in machine learning 

Test MSE = 0.533 Test MSE = 0.518 Test MSE = 0.564 Test MSE = 0.507 Test MSE = 0.524

Training MSE = 0.429Training MSE = 0.412Training MSE = 0.354Training MSE = 0.439 Training MSE = 0.425



MSE varies with model flexibility
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Test MSE = 0.533 Test MSE = 0.518 Test MSE = 0.564

Training MSE = 0.354Training MSE = 0.439 Training MSE = 0.425
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